Abstract:
An image reading device includes an image reader, which reads an original into image data by scanning the original in the main scanning direction at an image reading width while the original is being fed in a sub scanning direction; and a controller, which inputs reading settings information and set the image reading width to a maximum reading width of the image reader when the reading settings information includes a user instruction for setting the image reading width to the maximum reading width.
Abstract:
An apparatus for positioning a scanning starting point of an image scanning apparatus includes a platen, carriage, and a number of marks. The X-Y coordinate system defined by the platen has an X-axis defined by a first wide margin of the platen and a Y-axis defined by a first long margin of the platen. The carriage moves along the Y direction. The marks inside the image scanning apparatus indicate different Y coordinate values. The method for positioning a scanning starting point of an image scanning apparatus is as follows: the nearest mark to the document to be scanned is first chosen as a reference point. The vector from an image starting point of the document to be scanned to the reference point is then obtained. The carriage finally moves to the reference point chosen as a starting point and proceeds to scan.
Abstract:
An image size compensating system of a multifunction printer includes a scanning unit to generate scan data obtained by scanning a reference document and a copy of the reference document, a system control unit to extract scan information on widths and lengths of the reference document and the copy from the scan data, and a printer engine to receive the scan information from the system control unit and to control a main motor controlling a length of a print image and a polygon motor controlling a width of the print image so that sizes of the reference document and the copy are identical to each other.
Abstract:
Laser scanning apparatus, methods, and article of manufacture are described. In one embodiment, a laser scanning apparatus includes a light source configured to emit a light beam in a single direction, a scanning device optically coupled with the light source and configured to scan the light beam along a photoconductor in a plurality of scan lines. The laser scanning apparatus also includes a start-of-scan detector assembly configured to sample the light beam and initiate a start-of-scan operation of one of the scan lines of information to be written on the photoconductor, and wherein the sampled light beam is used to control a drive level of the light source.
Abstract:
A reading time setting section (44) determines a read area for an imaging section (25) on the basis of color chart positional data (id). The imaging section (25) reads an image on printing paper during the reading time and readout image data (rd) is stored in an image data storage section (45). A reference mark detecting section (46) detects the positions of reference marks from the readout image data (rd). A color chart actual position calculation section (47) corrects a tilt of a color chart determined from the positions of the reference marks and calculates an actual position of each of color chart fields (cr). An image data readout section (48) reads out image data on a color chart field corresponding to the calculated actual position. At the same time, image data on a white color field immediately above the color chart field is also read out. A white color correction section (49) produces a white reference on the basis of the image data on the white color field and corrects the image data on the color chart field. A color chart information determination section (50) measures color chart information, such as a color density and a dot percentage, about each of the color chart fields. This printing press determines a reading time on the basis of the position of the color chart at the time of printing plate recording and thereby allows imaging of an area including the color chart on the printing paper being transported.
Abstract:
A test image has a black bias on a white background. The black bias is a line set at about 45 degrees to the scan lines of a scanner. Boundary points of the scanned bias are found. A regression line is calculated from the positions of the boundary points. Differences in the positions of adjacent boundary points, together with the slope reciprocal of the regression line, are used to determine error values. The error values are compared with a gate value to determine if there are any occurrences of scan line misalignment.
Abstract:
An imaging device comprising a plurality of linear imaging arrays and image formation optics that provide field of views corresponding to the plurality of linear image arrays. At least one illumination module produces planar light illumination that substantially overlaps the field of views corresponding to the plurality of linear imaging arrays. Image processing circuitry performs image-based velocity estimation operations, which analyzes pixel data values of a plurality of composite 2-D images each derived from sequential image capture operations of a corresponding one linear imaging array to derive velocity data that represents an estimated velocity of the imaging device with respect to at least one target object disposed in the fields of view. Preferably, the image processing circuitry also produces a first image of portions of the target object(s), the first image having substantially constant aspect ratio, utilizing image transformation operations (or camera control operations) that are based upon the velocity data, to thereby compensate for aspect ratio distortions that would otherwise result from variations in velocity of the imaging device with respect to the target object(s). In addition, the image processing circuitry preferably carries out image-based horizontal jitter estimation and compensation operations, which estimate the horizontal jitter of the imaging device relative to the target object(s) over the image capture operations from which the first image is derived and transform the first image utilizing shift operations that are based upon such estimated horizontal jitter to produce a second image of portions of the target object(s) which compensates for horizontal jitter distortion that would otherwise result therefrom. The first image or second image (or image derived from sharpening the first or second images) is preferably subject to image-based bar code detection operations and/or OCR operations, or output for display to a display device.
Abstract:
A method of measuring sensor chip shift comprises the following steps. First, provide a contact image sensor module comprising a plurality of sensor chips arranged in a row on a main board, with each sensor chip having multiple sensors. Next, provide a test chart with a predetermined pattern. Further, enable the multiple sensors of the contact image sensor module to scan the predetermined pattern of the test chart. Moreover, select signal waves sensed by the sensors at the ends of two adjacent sensor chips. Finally, calculate the gap between the sensors at the ends of the two adjacent sensor chips according to the signal waves.
Abstract:
An apparatus and method for correcting a scanning error in a flatbed scanner, can minimize the scanning error due to deviations in position or scanning of a CCD (charge-coupled device) module by determining a scanning position, a scan region, and a scan rate for each flatbed scanner. The scanning error correcting apparatus includes a white shading plate having a black patch, a reading module for reading the white shading plate and the black patch, and a controller that compares information about the black patch read by the reading module with a predetermined reference value to correct the scanning error in the flatbed scanner. Thus, the apparatus and method can secure a scanning region in horizontal and vertical directions as wide as possible for each flatbed scanner and prevent occurrences of errors in a scanned image due to deviations of the CCD module. Furthermore, the apparatus and method provide an accurately scanned image having a desired scan rate by comparing right and left sizes and the entire scan size for a currently scanned region.
Abstract:
A scanning apparatus capable of locating a scanning starting point. The scanning apparatus includes a housing, a carriage, and a calibration paper. The housing includes a scanning platen for supporting a document to be scanned. The calibration paper is mounted on the scanning platen, adjoins one of the shorter sides of the scanning platen, and has a marked area. The marked area is defined by a set of functions and includes the scanning starting point for indicating users to locate the document to be scanned on the scanning platen according to the scanning starting point. When the carriage is moved to a scanning line, the carriage locates the scanning starting point according to the intersections of the marked area being scanned and the scanning line, and the set of functions defining the marked area.