Abstract:
Present embodiments include systems and methods for stick welding applications. In certain embodiments, simulation stick welding electrode holders may include stick electrode retraction assemblies configured to mechanically retract a simulation stick electrode toward the stick electrode retraction assembly to simulate consumption of the simulation stick electrode during a simulated stick welding process. In addition, in certain embodiments, stick welding electrode holders may include various input and output elements that enable, for example, control inputs to be input via the stick welding electrode holders, and operational statuses to be output via the stick welding electrode holders. Furthermore, in certain embodiments, a welding training system interface may be used to facilitate communication and cooperation of various stick welding electrode holders with a welding training system.
Abstract:
A method including determining an orientation of a display of a welding torch relative to a joint of a workpiece, displaying, on the display of the welding torch during a welding operation, a graphical representation of a welding parameter in relation to a predetermined threshold range for the welding parameter as a position of the welding torch changes, the orientation of the welding torch changes, a movement of the welding torch changes, or some combination thereof, and rotating the graphical representation of the welding parameter based at least in part on the determined orientation of the display of the welding torch relative to the joint. The graphical representation of the welding parameter is associated with the position of the welding torch relative to the joint, the orientation of the welding torch relative to the joint, the movement of the welding torch relative to the joint, or some combination thereof.
Abstract:
A system includes one or more sets of reflective visual markers, a light source configured to emit light, and a controller communicatively coupled to the light source. Each set of reflective visual markers is coupled to a component of a welding system. Each reflective visual marker is configured to reflect the emitted light received from the light source towards one or more cameras. The controller is configured to control illumination settings of the light source based at least in part on a status of the welding system being utilized to perform a live-arc welding operation.
Abstract:
A welding system includes a first sensor associated with a welding helmet and configured to sense a parameter indicative of a position of a welding torch relative to the welding helmet. The travel speed sensing system also includes a processing system communicatively coupled to the first sensor and configured to determine a position of the welding torch relative to a workpiece based on the sensed first parameter.