Abstract:
A programmable transmitter generates a frame preamble to train a receiver with respect to a communication link format that corresponds to a transmission mode wherein the transmission mode may comprise transmitting the communication link over one or more antennas. Generally, the invention includes generating a preamble with an arrangement that depends upon whether a Greenfield (high data rate) or mixed mode transmission is to occur and that depends upon a number of spatial streams that are to be generated. One format for high data rate transmission includes a short training sequence, a long training sequence and a signal field. The mixed mode transmission further includes a legacy prefix.
Abstract:
A method for accurate signal detection begins by receiving a radio frequency signal, which is then converted into baseband signals. The processing then continues by performing a normalized auto correlation on the down-converted baseband signal to produce a normalized auto correlation signal. The process continues by performing a periodic pattern detection on the down-converted baseband signal to produce a normalized detected periodic signal. The process then continues by comparing the normalized auto correlation value with an auto correlation threshold and by comparing the normalized detected periodic signal with a set of thresholds. When the normalized auto correlation value compares favorably with the auto correlation threshold and when the normalized detected periodic signal compares favorably with the set of thresholds, the down-converted baseband signal is indicated to be a valid signal.
Abstract:
An iterative decoder for use in a WLAN includes an inner decoder/detector, a first subtraction module, a deinterleaving module, an outer decoder, a second subtraction module, an interleaving module, and a determining module. The inner decoder/detector determines inner coded bits and extrinsic information of the inner coded bits from symbol vector based on a channel matrix and inner extrinsic information feedback. The first subtraction module subtracts the inner extrinsic information feedback from the extrinsic information of the inner coded bits. The deinterleaving module deinterleaves the output of the first subtraction module to produce deinterleaved inner extrinsic information. The outer decoder determines outer coded bits and extrinsic information of the outer coded bits from the deinterleaved inner extrinsic information. The second subtraction module subtracts the deinterleaved inner extrinsic information from the extrinsic information of the outer coded bits. The interleaving module interleaves the output of the second subtraction module to produce the inner extrinsic information feedback. The determining module produces decoded bits based on the outer coded bits.
Abstract:
A method for accurate signal detection begins by receiving a radio frequency signal, which is then converted into baseband signals. The processing then continues by performing a normalized auto correlation on the down-converted baseband signal to produce a normalized auto correlation signal. The process continues by performing a periodic pattern detection on the down-converted baseband signal to produce a normalized detected periodic signal. The process then continues by comparing the normalized auto correlation value with an auto correlation threshold and by comparing the normalized detected periodic signal with a set of thresholds. When the normalized auto correlation value compares favorably with the auto correlation threshold and when the normalized detected periodic signal compares favorably with the set of thresholds, the down-converted baseband signal is indicated to be a valid signal.
Abstract:
An analog-to-digital converter (ADC) disposed in a data reception path to convert data from an analog format to a digital format is switched between two or more power modes to conserve power when data is not being received. ADC stays in a lower power-lower precision mode until an inbound data is detected, at which time the ADC switches to a higher power-higher precision mode to convert the data. Once data conversion is completed, the ADC switches back to the lower power-lower precision mode to conserve power.
Abstract:
An analog-to-digital converter (ADC) disposed in a data reception path to convert data from an analog format to a digital format is switched between two or more power modes to conserve power when data is not being received. ADC stays in a lower power-lower precision mode until an inbound data is detected, at which time the ADC switches to a higher power-higher precision mode to convert the data. Once data conversion is completed, the ADC switches back to the lower power-lower precision mode to conserve power.
Abstract:
A communication device includes a wireless transmitter, a wireless receiver, and a processing module. The wireless transmitter, the wireless receiver, and/or the processing module facilitate: a control-level communication with another communication device using initial transmit beamforming parameters and initial receive beamforming parameters; a handshake communication with the other communication device to determine adjustments of at least one of the initial transmit beamforming parameters and the initial receive beamforming parameters to produce at least one of adjusted transmit beamforming parameters and adjusted receive beamforming parameters; and a normal-level communication with the other communication device using the at least one of the adjusted transmit beamforming parameters and the adjusted receive beamforming parameters.
Abstract:
A wireless communication system includes an access point and first and second stations. The first station transmits a first message that includes an address of a second station as a destination address and an address of the first station as a source address. The access point forwards the message including the address of the second station address as the destination address and the address of the first station as the source address. The second station receives the message from the first station during a first time interval and receives the first message from the access point during a second time interval. The second station processes the duplicate received message to produce inbound data.
Abstract:
A frame format for high data throughput wireless local area network transmissions includes a first preamble segment, a second preamble segment, and a variable length data segment. The first preamble segment includes at least one training sequence and a high throughput channel indication. The second preamble segment includes a high data throughput training sequence when the high throughput channel indication is set and includes a null segment when the high data throughput training sequence is not set.
Abstract:
A multimode wireless communication device includes a first radio section operably to convert outbound analog baseband signals into first outbound RF signals and to convert first inbound RF signals into inbound analog baseband signals when the wireless communication device is in a first mode of operation and a second radio section that performs similar functions in a second mode of operation. A diplexer section includes a first diplexer for coupling to a first antenna, and a second diplexer for coupling to a second antenna, and that selectively couples the first radio section to one of the first antenna and the second antenna, and that selectively couples the second radio section to one of the first antenna and the second antenna. First and second T/R switches are coupled to the first and second diplexers and to respectively, to the first and second radio sections.