Abstract:
A pipelined analog-to-digital converter (ADC) and an operating method are provided. The pipelined ADC includes a multiplying digital-to-analog converter (MDAC) and a sub-ADC. The MDAC alternatively operates in an amplifying phase and a sampling phase according to two non-overlapping clocks, and performs operations on an input signal in the amplifying phase according to a target voltage determined by a digital code. The sub ADC includes multiple comparators, a determination circuit, and an encoding circuit. The comparators generate multiple comparison results by comparing the input signal with multiple predetermined voltages. The determination circuit generates multiple comparison completion signals in a non-overlapping interval of the two clocks according to the comparison results. The comparison completion signals respectively indicate whether the comparators complete the comparison. The encoding circuit determines the digital code according to the comparison results and the comparison completion signals.
Abstract:
A converter may include multiple converter stages connected in series. Each converter stage may receive a clock signal and an analog input signal, and may generate an analog output signal and a digital output signal. Each converter stages may include an encoder generating the digital output signal, a decoder generating a reconstructed signal, a delaying converter generating a delayed signal, and an amplifier generating a residue signal, wherein the delayed signal may be a continuous current signal.
Abstract:
Multi-stage parallel super-high-speed ADC and DAC of a logarithmic companding law has a voltage follower switch having zero voltage drop, and also has a lossless threshold switch group, wherein a quantization voltage of A/D conversion or D/A conversion is directly obtained through voltage-dividing resistance thereof. The ADC and DAC simplify a conversion process and reduce a conversion error. The ADC and DAC provide multi-stage multi-bit parallel super-high-speed A/D conversion and D/A conversion with logarithmic companding law of a high conversion rate and the low conversion error.
Abstract:
Systems and methods for protecting an analog-to-digital converter (ADC) are provided. The provided systems and methods utilize comparators in a circuit of a stage of the ADC to compare a reference signal to an input signal and output one or more maximum signals when the input signal exceeds the reference signal. A decoder in the stage of the ADC may output a reset signal to another circuit in the stage of the ADC when a predetermined number of the maximum signals are received. When the other circuit receives the reset signal, the ADC may enter a protection mode to protect the ADC by ensuring that the excessive input signal is not propagated to subsequent stages.
Abstract:
A switching scheme is used during a calibration mode for determining calibration coefficients of each calibrated stage of a pipeline analog-to-digital converter (ADC). A calibrated stage of the pipeline ADC includes an amplifier for amplifying a residue voltage of the stage and a sampling capacitor comprising a plurality of sub-capacitors. The plurality of sub-capacitors have a first terminal connected to an input of amplifier and a second terminal connected to one or more switches that selectively couple the second terminal to the input terminal of the stage, a first reference voltage or a second reference voltage lower than the first reference voltage. During foreground calibration, a number of measurements are taken at an output of the amplifier to determine the calibration coefficient of the calibrated stage.
Abstract:
A method for digitizing an analog signal through a pipelined analog-to-digital converter (ADC) may include pipelining a sample sub-stage, a quantization sub-stage and an amplification sub-stage to an ADC lane. Within a first of multiple pipelined stages, clock phases may be assigned to the ADC lane, including a sample clock phase, a quantization clock phase, and an amplification clock phase such that the quantization clock phase is non-overlapping with the sample clock phase and the amplification clock phase. The non-overlapping feature may be facilitated by generating multiple reference clock phases for the sub-stages of multiple ADC lanes, and interleaving assignment of the sample clock phase, the quantization clock phase, and the amplification clock phase to the reference clock phases among the multiple lanes.
Abstract:
A pipelined A/D converter circuit includes a sample hold circuit configured to sample and hold an analog input signal, and output a sample hold signal, and an A/D converter circuit including A/D converter circuit parts connected to each other in cascade, and performs A/D conversion in a pipelined form. The pipelined A/D converter circuit part of each stage includes a sub-A/D converter circuit, a multiplier D/A converter circuit, and a precharge circuit. The sub-A/D converter circuit includes comparators, and A/D convert the input signal into a digital signal of predetermined bits, a multiplier D/A converter circuit for D/A converting the digital signal from the sub-A/D converter circuit into an analog control signal generated with a reference voltage served as a reference value, sample, hold and amplify the input signal by sampling capacitors based on the analog control signal.
Abstract:
An analog-to-digital converter (ADC) function in which digital error correction is provided. Parallel ADC stages are synchronously clocked to convert an analog input signal into digital words; at least one of the digital outputs is encoded according to an error correction code. Decision logic circuitry decodes a code word comprised of the concatenation of the digital outputs from the parallel stages, to derive a digital output from which the digital output word corresponding to the analog input signal can be derived. The decision logic circuitry can provide an error signal used to correct the state of one or more bits of the digital output from one of the ADC stages, for the case of a systematic code; alternatively, the decision logic circuitry can directly decode the code word to provide the digital output. The architecture may be applied to stages in a pipelined ADC.
Abstract:
To improve resolution of a built-in A/D converter by reducing the area occupied by a chip of the built-in A/D converter in a semiconductor integrated circuit that is mounted in an on-vehicle millimeter wave radar device and which incorporates an A/D converter and an MPU. In the semiconductor integrated circuit, a plurality of reception signals of the radar device is A/D-converted by a single digital correction type A/D converter. The digital correction type A/D converter of the single A/D converter is a foreground digital correction type A/D converter that sequentially A/D-converts the reception signals output from a multiplexer of a receiving interface. The single A/D converter includes a pipeline type A/D converter having a plurality of cascade-coupled converters. The semiconductor integrated circuit comprises a correction signal generating unit, a digital correction D/A converter, and a digital correction unit for digital correction.
Abstract:
A switching scheme is used during a calibration mode for determining calibration coefficients of each calibrated stage of a pipeline analog-to-digital converter (ADC). A calibrated stage of the pipeline ADC includes an amplifier for amplifying a residue voltage of the stage and a sampling capacitor comprising a plurality of sub-capacitors. The plurality of sub-capacitors have a first terminal connected to an input of amplifier and a second terminal connected to one or more switches that selectively couple the second terminal to the input terminal of the stage, a first reference voltage or a second reference voltage lower than the first reference voltage. During foreground calibration, a number of measurements are taken at an output of the amplifier to determine the calibration coefficient of the calibrated stage.