Abstract:
A multimode wireless communication device includes a first radio section operably to convert outbound analog baseband signals into first outbound RF signals and to convert first inbound RF signals into inbound analog baseband signals when the wireless communication device is in a first mode of operation and a second radio section that performs similar functions in a second mode of operation. A diplexer section includes a first diplexer for coupling to a first antenna, and a second diplexer for coupling to a second antenna, and that selectively couples the first radio section to one of the first antenna and the second antenna, and that selectively couples the second radio section to one of the first antenna and the second antenna. First and second T/R switches are coupled to the first and second diplexers and to respectively, to the first and second radio sections.
Abstract:
A method for accurate signal detection begins by receiving a radio frequency signal, which is then converted into baseband signals. The processing then continues by performing a normalized auto correlation on the down-converted baseband signal to produce a normalized auto correlation signal. The process continues by performing a periodic pattern detection on the down-converted baseband signal to produce a normalized detected periodic signal. The process then continues by comparing the normalized auto correlation value with an auto correlation threshold and by comparing the normalized detected periodic signal with a set of thresholds. When the normalized auto correlation value compares favorably with the auto correlation threshold and when the normalized detected periodic signal compares favorably with the set of thresholds, the down-converted baseband signal is indicated to be a valid signal.
Abstract:
A method for accurate signal detection begins by receiving a radio frequency signal, which is then converted into baseband signals. The processing then continues by performing a normalized auto correlation on the down-converted baseband signal to produce a normalized auto correlation signal. The process continues by performing a periodic pattern detection on the down-converted baseband signal to produce a normalized detected periodic signal. The process then continues by comparing the normalized auto correlation value with an auto correlation threshold and by comparing the normalized detected periodic signal with a set of thresholds. When the normalized auto correlation value compares favorably with the auto correlation threshold and when the normalized detected periodic signal compares favorably with the set of thresholds, the down-converted baseband signal is indicated to be a valid signal.
Abstract:
A multimode wireless communication includes a digital baseband processing module, an analog to digital converter module, a digital to analog converter module, a first radio section, and a second radio section. The digital baseband processing module is operably coupled to convert outbound data into outbound digital baseband signals and to convert inbound digital baseband signals into inbound data. The analog to digital converter module is operably coupled to convert inbound analog baseband signals into the inbound digital baseband signals. The digital to analog converter module is operably coupled to convert the outbound digital baseband signals into outbound analog baseband signals. The first radio section is operably coupled to convert the outbound analog baseband signals into first outbound radio frequency (RF) signals and to convert first inbound RF signals into the inbound analog baseband signals when the wireless communication device is in a first mode of operation. The second radio section is operably coupled to convert the outbound analog baseband signals into second outbound RF signals and to convert second inbound RF signals into the inbound analog baseband signals when the wireless communication device is in a second mode of operation.
Abstract:
A Viterbi decoding demapping scheme for a wireless communications device processor substantially implemented on a single CMOS integrated circuit is described. By using log and antilog techniques, simplified multiplication and division operations in the branch metric calculation may be performed. A fully integrated receiver circuit with Viterbi decoder with branch metric computation consumes less circuit space and power than conventional solutions.
Abstract:
A method of determining an end of a transmitted frame at a receiver on a frame-based communications network. An end of frame format for the transmitted frame is provided having an end of frame plurality of symbols. A received transmitted frame is filtered using filter coefficients matched to the end of frame plurality of symbols to provide a correlation sequence low-pass filtered signal. A squared magnitude of the correlation sequence is computed. The squared magnitude of the correlation sequence is low-pass filtered to provide a low-pass filtered correlation signal. The low-pass filtered correlation signal is delayed to provide a delayed low-pass filtered correlation signal. The delayed low-pass filtered correlation signal is multiplied by a fixed predetermined threshold to provide a multiplied correlation signal. The multiplied correlation signal is compared with the low-pass filtered correlation signal to provide a match/no match comparison indicative of the possible end of a transmitted frame.
Abstract:
A method and apparatus for obtaining a channel estimate and a baud frequency offset estimate for a communications channel in a communications system. The communications system has a transmitter for transmitting to a receiver over the communications channel signals representing data appended to a preamble signal. The preamble signal is provided as a periodic plurality of preamble sequences, each preamble sequence being generated in accordance with: 1 32 ∑ 15 k = 0 b k b mod ( k + n , 16 ) * = { 1 , n = 0 0 , n ≠ 0 . A signal representing the periodic plurality of preamble sequences is sent by a transmitter over the communications channel to a receiver and is received at the receiver as a received signal. The received signal is processed to determine from the received signal both a channel estimate in accordance with: h ^ = 1 64 B H ( y 1 + y 2 ) , wherein B represents a matrix of preamble symbol values, upsampled by four and zero-filled, and y1 and y2 are column vectors of received samples, and a baud frequency offset estimate &Dgr;fb in accordance with: S = ∑ 63 k = 0 y k y k + 64 * Δ f b ≅ real ( S ) · f b imag ( S ) · f c · 32 π , wherein fb is a baud frequency and fc is a center frequency of the transmission signal.
Abstract:
A method for accurate signal detection begins by receiving a radio frequency signal, which is then converted into baseband signals. The processing then continues by performing a normalized auto correlation on the down-converted baseband signal to produce a normalized auto correlation signal. The process continues by performing a periodic pattern detection on the down-converted baseband signal to produce a normalized detected periodic signal. The process then continues by comparing the normalized auto correlation value with an auto correlation threshold and by comparing the normalized detected periodic signal with a set of thresholds. When the normalized auto correlation value compares favorably with the auto correlation threshold and when the normalized detected periodic signal compares favorably with the set of thresholds, the down-converted baseband signal is indicated to be a valid signal.
Abstract:
A method and signal therfor embodied in a carrier wave for sending information from transmit stations to receive stations over a transmission medium of a frame-based communications network. The information is sent in transmit frames having a frame format comprising a fixed rate header, followed by a variable rate payload, followed by a fixed rate trailer. The fixed rate header includes a preamble. The preamble has a repetition of four symbol sequences for facilitating power estimation, gain control, baud frequency offset estimation, equalizer training, carrier sensing and collision detection. The preamble also includes a frame control field. The frame control field has scrambler control information for frame scrambling initialization, a priority field to determine the absolute priority a transmit frame will have when determining access to the transmission medium, a payload encoding field which determines constellation encoding of payload bits in the variable rate payload, and a header check sequence for providing a cyclic redundancy check. The variable rate payload is transmitted pursuant to dynamic adjustable frame encoding parameters for improving transmission performance for a transmit frame being transmitted from a transmitting station to a receiving station. The header also includes a destination address field, a source address field and an ethertype field.
Abstract:
A radio frequency transmitter includes a digital baseband and coding module, an inverse fast Fourier transform (IFFT) module, a complex digital filter, a complex digital-to-analog converter and a radio frequency modulation module. The digital baseband and coding module is operably coupled to convert outbound data into outbound symbols in accordance with a baseband encoding protocol. The IFFT module is operably coupled to convert the outbound symbols into a complex time domain sample sequence. The complex digital filter is operably coupled to filter the complex time domain sequence such that signal strength of outbound RF signals in an exclusion RF band is at or below a specified signal strength with negligible attenuation on in-band signal strength.