Abstract:
A transmitting apparatus includes an OFDM modulator that generates a first modulation symbol by modulating a first information signal using a first modulation scheme, a signal point of the first modulated information signal being arranged at a first position in an in-phase quadrature-phase plane and a second modulation symbol by modulating a second information signal using the first modulation scheme, and by changing a second position at which a signal point of the modulated second information signal is arranged to a third position in the in-phase quadrature-phase plane, wherein the third position is different from the first position. An OFDM modulation signal includes the first modulation symbol and the second modulation symbol, wherein the OFDM modulation signal comprises a plurality of subcarriers. A transmitter transmits the OFDM modulation signal.
Abstract:
All data symbols used in data transmission of a modulated signal are precoded by hopping between precoding matrices so that the precoding matrix used to precode each data symbol and the precoding matrices used to precode data symbols that are adjacent to the data symbol in the frequency domain and the time domain all differ. A modulated signal with such data symbols arranged therein is transmitted.
Abstract:
A transmitter apparatus wherein a relatively simple structure is used to suppress burst errors without changing the block sizes of encoded blocks even when the number of modulation multi-values is increased. An encoding part subjects transport data to a block encoding process to form block encoded data. A modulating part modulates the block encoded data to form data symbols; and an arranging (interleaving) part arranges (interleaves) the block encoded data in such a manner that the intra-block encoded data of the encoded blocks, which include their respective single different data symbol, get together, and then supplies the arranged (interleaved) block encoded data to the modulating part. In this way, there can be provided a transmitter apparatus wherein a relatively simple structure is used to suppress burst errors without changing the block sizes of encoded blocks even when the number of modulation multi-values is increased.
Abstract:
Provided is a precoding method for generating, from a plurality of baseband signals, a plurality of precoded signals to be transmitted over the same frequency bandwidth at the same time, including the steps of selecting a matrix F[i] from among N matrices, which define precoding performed on the plurality of baseband signals, while switching between the N matrices, i being an integer from 0 to N−1, and N being an integer at least two, generating a first precoded signal z1 and a second precoded signal z2, generating a first encoded block and a second encoded block using a predetermined error correction block encoding method, generating a baseband signal with M symbols from the first encoded block and a baseband signal with M symbols the second encoded block, and precoding a combination of the generated baseband signals to generate a precoded signal having M slots.
Abstract:
An encoding method and encoder of a time-varying LDPC-CC with high error correction performance are provided. In an encoding method of performing low density parity check convolutional coding (LDPC-CC) of a time varying period of q using a parity check polynomial of a coding rate of (n−1)/n (where n is an integer equal to or greater than 2), the time varying period of q is a prime number greater than 3, the method receiving an information sequence as input and encoding the information sequence using Equation 1 as a g-th (g=0, 1, . . . , q−1) parity check polynomial to satisfy 0.
Abstract:
A transmitter apparatus wherein a simple structure is used to successfully suppress the degradation of error rate performance that otherwise would be caused by fading or the like. There are included encoding parts that encode transport data; a mapping part that performs such a mapping that encoded data sequentially formed by the encoding parts are not successively included in the same symbol, thereby forming data symbols; and a symbol interleaver that interleaves the data symbols. In this way, a low computational complexity can be used to perform an interleaving process equivalent to a bit interleaving process to effectively improve the reception quality at a receiving end.
Abstract:
A transmission scheme for transmitting a first modulated signal and a second modulated signal in the same frequency at the same time. According to the transmission scheme, a precoding weight multiplying unit multiplies a precoding weight by a baseband signal after a first mapping and a baseband signal after a second mapping and outputs the first modulated signal and the second modulated signal. In the precoding weight multiplying unit, precoding weights are regularly hopped.
Abstract:
A transmission device includes: a weighting synthesizer that generates a first precoded signal and a second precoded signal; a first pilot inserter that inserts a pilot signal into the first precoded signal; a phase changer that applies a phase change of i×Δλ to the second precoded signal, where i is a symbol number and an integer that is greater than or equal to 0; an inserter that inserts a pilot signal into the phase-changed second precoded signal; and a phase changer that applies a phase change to the phase-changed and pilot-signal-inserted second precoded signal. Δλ satisfies π/2 radians
Abstract:
The purpose of the present invention is to both suppress any decrease in data transmission efficiency in a device for transmitting data and suppress any decrease in received data quality in other devices. This communication device performs communication using a frequency band that is can be used in a wireless system, the communication device comprising a signal processing unit for generating a modulated signal, and a transmission unit for transmitting the modulated signal. The frequency band that can be used in the wireless system is configured from a plurality of channels. The transmission unit transmits the modulated signal using a first channel among the plurality of channels in a first time slot, and transmits the modulated signal using a second channel different from the first channel in a second time slot that follows the first time slot.
Abstract:
In a transmission method according to one aspect of the present disclosure, a encoder performs error correction coding on an information bit string to generate a code word. A mapper modulates a first bit string in which the number of bits is the predetermined integral multiple of (X+Y) in the code word using a first scheme, the first scheme being a set of a modulation scheme in which an X-bit string is mapped to generate a first complex signal and a modulation scheme in which a Y-bit string is mapped to generate a second complex signal, and modulates a second bit string in which the first bit string is removed from the code word using a second scheme different from the first scheme.