Abstract:
Biogenic sulfide production is synergistically inhibited by treating sulfate-reducing bacteria (SRB) with a biocide and a metabolic inhibitor. The biocide directly kills a first portion of the SRB. The metabolic inhibitor inhibits sulfate-reducing growth of a second portion of the SRB without directly killing the second portion of the SRB. The treatment of SRB with both a biocide and a metabolic inhibitor provides effective biogenic sulfide inhibition at significantly lower concentrations than would be required if the biocide or metabolic inhibitor was used alone.
Abstract:
Radio frequency radiation is introduced downhole to heat one or more components of an in-situ hydrocarbon mixture. The mixture is heated to a temperature conducive to auto-ignition. Upon heating, an oxidant is introduced at conditions supportive of auto-ignition. The combined oxidant/hydrocarbon mixture is then allowed to auto-ignite and combust to form a partially upgraded mixture. Certain embodiments include introducing an ignition agent to facilitate auto-ignition. The radio frequency radiation may be supplemented, continued, or varied as desired to maintain, facilitate, or manage the resulting combustion process. In some cases, an activator is introduced to the formation to interact with the generated radio frequency radiation to enhance hydrocarbon heating. Advantages of certain embodiments include lower cost, reduced heating/ignition equipment, higher efficiencies, increased hydrocarbon recovery, and fewer auto-ignition failures.
Abstract:
A conical piled monopod provides a fixed, ice worthy structure used in cold weather offshore environments for accessing hydrocarbon deposits under the seafloor.
Abstract:
Methods and systems for removing nitrogen during liquefaction of natural are provided. Methods of removing nitrogen include warming a predominantly methane stream in a methane cold box to provide a warmed predominantly methane stream; conducting at least a portion of the warmed predominantly methane stream from the methane cold box to a nitrogen removal unit comprising at least a first nitrogen removal column and a last nitrogen removal column, wherein the first nitrogen removal column is located upstream of the last nitrogen removal column; passing the warmed predominantly methane stream through the last nitrogen removal column to provide a refluxed warmed predominantly methane stream; and routing at least a portion of the refluxed warmed predominantly methane stream to the last nitrogen removal column.
Abstract:
This invention relates to drilling a well, particularly an oil or gas well, where casing or liner will be installed to stabilize the wellbore. The present invention is intended to permit more drilling and longer lengths of casing or liner to be installed at one time. The present invention includes a combination of a smear tool and specially sized granular lost circulation material solids in the drilling mud which work together to close and seal leaking formations and fractures whether pre-existing or induced by drilling. By the natural collection of the inventive solids along with the conventional particles in the drilling mud to form a filter cake at the problem areas along the wall of the wellbore and the smear tool arranged to compress the filter cake into the problem areas, lost circulation is minimized. Maintaining circulation naturally allows for longer drilling cycles and potentially fewer liner joints in the well. As such, larger diameter boreholes are located in the hydrocarbon bearing formation and less time is spent installing casing or liner pipe.
Abstract:
Systems and methods generate steam in hydrocarbon recovery operations and may further enable emulsion separation and product upgrading. The methods rely on indirect boiling of water by contact with a thermal transfer liquid heated to a temperature sufficient to vaporize the water. Examples of the liquid include oils, recovered hydrocarbons, liquid metals and brine. Heating of the liquid may utilize circulation of the liquid across or through a furnace, heat exchangers, or a gas-liquid contactor supplied with hot gas. Further, a solvent for bitumen introduced into the water may also vaporize upon contact with the thermal transfer liquid.
Abstract:
Systems and methods generate steam in hydrocarbon recovery operations and may further enable emulsion separation and product upgrading. The methods rely on indirect boiling of water by contact with a thermal transfer liquid heated to a temperature sufficient to vaporize the water. Examples of the liquid include oils, recovered hydrocarbons, liquid metals and brine. Heating of the liquid may utilize circulation of the liquid across or through a furnace, heat exchangers, or a gas-liquid contactor supplied with hot gas. Further, a solvent for bitumen introduced into the water may also vaporize upon contact with the thermal transfer liquid.
Abstract:
Methods and systems for liquefying natural gas using nonflammable refrigerants are provided. Methods of liquefaction include cooling a natural gas stream via indirect heat exchange with a first nonflammable refrigerant selected from the group consisting of: difluoromethane, pentafluoromethane, trifluoromethane, hexafluoroethane, tetrafluoroethane, pentafluorethane, trifluoroethane, pentafluoroethane, any derivative thereof, and any combination thereof during a first refrigeration cycle; and cooling the natural gas stream via indirect heat exchange with a second refrigerant during a second refrigeration cycle.
Abstract:
A method of event location to avoid first break picking when signals are small or the ambient noise level is high is described. In this method traveltime associated with the maximum amplitude phases (for any mode of wave) are identified and picked from one or more sensors in an array. Difference between the arrival times are then calculated. A grid search (or optimization) techniques are then employed to search for the event location to match the observed time differences.
Abstract:
The present invention relates to cryogenic fluids. In another aspect, the present invention relates to additional protection of an apparatus containing equipment capable of operating at cryogenic temperatures and containing cryogenic materials. In one embodiment of the present invention, an apparatus includes a primary enclosure defining an internal volume. The primary enclosure includes primary walls, a primary ceiling, a primary floor, and a vapor venting system. The primary enclosure is fabricated from a low temperature alloy. At least of a portion of the primary floor forms a slope to a hydrocarbon outlet. A perforated plate is located on top of the hydrocarbon outlet. The perforated plate is fabricated from a low temperature alloy. A fire retardant agent applied to the exterior surface of the primary enclosure.