FUSED HETEROCYCLIC DERIVATIVES, THEIR PREPARATION METHODS THEREOF AND MEDICAL USES THEREOF

    公开(公告)号:US20190185472A1

    公开(公告)日:2019-06-20

    申请号:US16327722

    申请日:2017-08-16

    摘要: The present invention relates to fused heterocyclic derivatives, processes for their preparation and their use in medicine. Specifically, the present invention relates to a novel derivative represented by the formula (I′), or its pharmaceutically acceptable salt thereof, a pharmaceutical composition containing the derivative or its pharmaceutically acceptable salt thereof, and the method for preparing the derivative and its pharmaceutically acceptable salt thereof. The present invention also relates to the use of the derivative and its pharmaceutically acceptable salt thereof, or a pharmaceutical composition containing the derivative and its pharmaceutically acceptable salt thereof in the preparation of medicines, in particularly as IDO inhibitor medicines, for treating and/or preventing cancers. Wherein each substituent of the formula (I′) is the same as defined in the specification.

    TREATMENT FOR INFECTION COMPOSED OF MENSTRUAL STEM CELLS

    公开(公告)号:US20180303878A1

    公开(公告)日:2018-10-25

    申请号:US15768469

    申请日:2016-10-14

    IPC分类号: A61K35/28 A61P31/04

    摘要: The present invention offers a solution to the lack of effective alternative treatments to fight infectious disease, preferably involving sepsis, comprising active ingredients obtained by non-intrusive and efficient methods. In particular, the present invention is the first to show that mesenchymal stem cells obtained from menstrual fluids (MenSCs) have the capacity to control infectious diseases, especially those leading to a reaction of the host body like sepsis. As shown herein, in vivo experiments illustrate that MenSCs have antibacterial activity in vitro, increase the survival rates of a mouse model for sepsis, regulate several parameters that are altered in sepsis patients and that are related with multi-organ dysfunction, such as the levels of Alanine aminotransferase (ALT), Aspartate aminotransferase (AST), alkaline phosphatase (ALP), glucose in blood, serum albumin, lung injury. Results show that in the mouse model for sepsis, MenScs also regulate the pro- and anti-inflammatory cytokine levels, reduce the loss of lymphocytes during sepsis and systemic bacterial proliferation in blood. The conditioned medium of MenSCs also increases the survival rates of mouse animals affected by sepsis. Overall, the invention offers a promising alternative method to treat infectious diseases. Since it is principally composed of stem cells present in menstrual fluid, the invention provides an ease access and repeated sampling in a non-invasive manner. Such attributes allow the rapid production of the treatment.