Abstract:
Embodiments may include systems and methods to create and edit a representation of a worksite, to create various data objects, to classify such objects as various types of pre-defined “features” with attendant properties and layout constraints. As part of or in addition to classification, an embodiment may include systems and methods to create, associate, and edit intrinsic and extrinsic properties to these objects. A design engine may apply of design rules to the features described above to generate one or more solar collectors installation design alternatives, including generation of on-screen and/or paper representations of the physical layout or arrangement of the one or more design alternatives. Embodiments may also include definition of one or more design apertures, each of which may correspond to boundaries in which solar collector layouts should comply with distinct sets of user-defined design preferences. Distinct apertures may provide heterogeneous regions of collector layout according to the user-defined design preferences.
Abstract:
A solar hot air system is provided containing a solar hot air collector and an inlet duct connected to the solar hot air collector and a building fresh air intake. A sensor is connected to the building fresh air intake, configured to measure fan speed and damper position. In addition, a sensor is connected to the inlet duct, configured to measure air volume and temperature. Further, a sensor is connected to the solar hot air collector, configured to measure internal and ambient temperature. A means for calculating a periodic fee to a user based at least in part upon an amount of generated energy is also provided.
Abstract:
A system and method for modeling resource availability includes a data collection system including one or more data collection devices configured to collect and collecting information pertaining to resource availability in a geographic region, and a modeling system, coupled to the data collection system, including one or more computing devices configured to process and processing the collected information to generate data that identifies one or more development sites specific to the geographic region, based on resource availability and add-on information specific to the geographic region.
Abstract:
A solar power forecasting system can provide forecasts of solar power output by photovoltaic plants over multiple time frames. A first time frame may be several hours from the time of the forecast, which can allow utility personnel sufficient time to make decisions to counteract a forecasted shortfall in solar power output. For example, the utility personnel can decide to increase power production and/or to purchase additional power to make up for any forecasted shortfall in solar power output. A second time frame can be several minutes from the time of the forecast, which can allow for operations to mitigate effects of a forecasted shortfall in solar power output. Such mitigation operations can include directing an energy management system to shed noncritical loads and/or ramping down the power produced by the photovoltaic plants at a rate that is acceptable to the utility to which the photovoltaic plants provide power.
Abstract:
A method for monitoring a solar thermal energy system including a solar thermal loop and a heat consumption loop thermally coupled by a heat exchanger, the solar thermal loop including a solar collector device fluidly connected to the heat exchanger and a primary heat transfer fluid disposed in the solar thermal loop and flowing through the solar collector device and the heat exchanger, the heat consumption loop including a heat consuming apparatus fluidly connected to the heat exchanger and a secondary heat transfer fluid disposed in the heat consumption loop and flowing through the heat consuming apparatus and the heat exchanger, includes: detecting an inlet temperature of the secondary heat transfer fluid upstream of the heat consuming apparatus or the heat exchanger, and generating corresponding inlet temperature data; detecting an outlet temperature of the secondary heat transfer fluid downstream of the heat consuming apparatus or the heat exchanger, and generating corresponding outlet temperature data; detecting a flow rate of the secondary heat transfer fluid through the heat consuming apparatus or the heat exchanger and generating corresponding flow rate data; determining an amount of thermal energy transferred from the secondary heat transfer fluid to the heat consuming apparatus or the heat exchanger using the inlet temperature data, the outlet temperature data, and the flow rate data, and generating corresponding consumption data; detecting a performance parameter of the solar thermal loop and generating corresponding solar thermal performance data; and correlating the consumption data and the solar thermal performance data for subsequent analysis.
Abstract:
A solar power forecasting system can provide forecasts of solar power output by photovoltaic plants over multiple time frames. A first time frame may be several hours from the time of the forecast, which can allow utility personnel sufficient time to make decisions to counteract a forecasted shortfall in solar power output. For example, the utility personnel can decide to increase power production and/or to purchase additional power to make up for any forecasted shortfall in solar power output. A second time frame can be several minutes from the time of the forecast, which can allow for operations to mitigate effects of a forecasted shortfall in solar power output. Such mitigation operations can include directing an energy management system to shed noncritical loads and/or ramping down the power produced by the photovoltaic plants at a rate that is acceptable to the utility to which the photovoltaic plants provide power.
Abstract:
Methods for designing and constructing geothermal ground loop subsystems, and also improved methods and apparatus for in situ measuring the capacity of a ground heat exchanger installation to transfer heat energy with its surrounding deep Earth environment, during cooling and heating modes of operation of the ground source heat pumps and other geothermal systems to which such ground heat exchangers are operably connected.
Abstract:
An apparatus for performing a thermal response test to determine thermo-physical properties of a geothermal heat exchange resource. The apparatus includes a geothermal heat exchanger adapted to circulate a fluid through a loop in a sample borehole in the geothermal heat exchange resource and a variable speed pumping system capable of time-dynamic control of a fluid flow rate of the fluid. A multi-stage heating system is capable of applying a series of time-dynamic heat pulses to the fluid. The apparatus further includes a fluid temperature sensor and one or more fluid pressure, fluid density and/or fluid flow rate sensors, the sensors measuring data on the properties of the fluid that are predictive of the thermo-physical properties of the geothermal heat exchange resource.
Abstract:
The invention, the Concentrated Solar Thermoelectric Power System, herein abbreviated as C-STEPS, is a thermo-optical system configuration for the purpose of achieving a high solar energy-to-electricity conversion efficiency based on thermoelectric (TE) devices that use the Seebeck effect. It does so by implementing a system for concentrated solar energy using a design that combines a dual-function reflector/radiator component with an active or passive heat convection mechanism to ensure that TE module operation is maintained in a safe elevated temperature range with respect to the ambient temperature. Unsafe module temperatures are avoided by automatically adjusting the TE module hot side temperature directly or indirectly by regulating the TE cold side temperature using a variety of passive or active mechanisms, including the reflector/radiator component, phase change material, or convection/conduction mechanisms. A Numerical Design Model is used to optimize the configuration geometry and performance in various terrestrial and space applications and it is a central feature of the invention.
Abstract:
A computer-implemented method is provided for optimizing configuration of absorption enhancement structures for use in a photovoltaic enhancement film that is applied onto a PV device to improve absorption. The method includes receiving optimization run input defining a PV enhancement film including defining absorption enhancement structures with differing configurations. The method includes modeling a PV device including PV material such as a silicon thin film. A first ray tracing is performed over a range of incidence angles for the PV device. The method includes determining a set of base path angles for the PV material layer based on this first ray tracing. A second ray tracing is performed for the PV device with the enhancement film, which has absorption enhancement structures. Enhanced path lengths are determined based on the second ray tracking, and path length ratios are determined by comparing the enhanced path lengths to the base path lengths.