Abstract:
A solar energy conversion assembly for efficiently capturing solar energy by providing additional chances to absorb reflected sunlight. The assembly includes one or more solar cells that each include a light-receiving surface. A fraction of light incident upon the light-receiving surface is reflected. The assembly includes a photovoltaic (PV) enhancement film of transparent material such as plastic positioned to cover at least a portion of the light-receiving surface. The PV enhancement film includes a substrate positioned proximate to or abutting the light-receiving surface. The film includes a plurality of total internal reflection (TIR) elements on the substrate opposite the light-receiving surface. The TIR elements transmit initially received or incident light to the light-receiving surface of the solar cell without significant focusing and then use TIR to trap a substantial portion of the reflected light to provide additional chances for absorption such that typically lost light may be converted to electricity.
Abstract:
A solar power system for supplying concentrated solar energy. The system includes a cylindrical absorber tube carrying the working fluid and a concentrator assembly, which includes an array of linear lenses such as Fresnel lenses. The concentrator assembly includes a planar optical wafer paired with each of the linear lenses to direct light, which the lenses focus on a first edge of the wafers, onto the collector via a second or output edge of the wafers. Each of the optical wafers is formed from a light transmissive material and acts as a light “pipe.” The lens array is spaced apart a distance from the first edges of the optical wafers. This distance or lens array height is periodically adjusted to account for seasonal changes in the Sun's position, such that the focal point of each linear lens remains upon the first edge of one of the optical wafers yearlong.
Abstract:
A solar energy conversion assembly for efficiently capturing solar energy by providing additional chances to absorb reflected sunlight and providing longer path lengths in the photovoltaic (PV) material. The assembly includes a PV device including a layer of PV material and a protective top covering the PV material (e.g., a planar glass cover applied with adhesive to the PV material). The assembly further includes a PV enhancement film formed of a substantially transparent material, and film is applied to at least a portion of the protective top such as with a substantially transparent adhesive. The PV enhancement film includes a plurality of absorption enhancement structures on the substrate opposite the PV device. Each absorption enhancement structure includes a light receiving surface that refracts incident light striking the PV enhancement film to provide an average path length ratio of greater than about 1.20 in the layer of PV material.
Abstract:
A computer-implemented method is provided for optimizing configuration of absorption enhancement structures for use in a photovoltaic enhancement film that is applied onto a PV device to improve absorption. The method includes receiving optimization run input defining a PV enhancement film including defining absorption enhancement structures with differing configurations. The method includes modeling a PV device including PV material such as a silicon thin film. A first ray tracing is performed over a range of incidence angles for the PV device. The method includes determining a set of base path angles for the PV material layer based on this first ray tracing. A second ray tracing is performed for the PV device with the enhancement film, which has absorption enhancement structures. Enhanced path lengths are determined based on the second ray tracking, and path length ratios are determined by comparing the enhanced path lengths to the base path lengths.
Abstract:
A solar energy conversion assembly for efficiently capturing solar energy by providing additional chances to absorb reflected sunlight and providing longer path lengths in the photovoltaic (PV) material. The assembly includes a PV device including a layer of PV material and a protective top covering the PV material (e.g., a planar glass cover applied with adhesive to the PV material). The assembly further includes a PV enhancement film formed of a substantially transparent material, and film is applied to at least a portion of the protective top such as with a substantially transparent adhesive. The PV enhancement film includes a plurality of absorption enhancement structures on the substrate opposite the PV device. Each absorption enhancement structure includes a light receiving surface that refracts incident light striking the PV enhancement film to provide an average path length ratio of greater than about 1.20 in the layer of PV material.
Abstract:
A method for forming a container with a lenticular lens system integrally formed in a clear sidewall with the lenticular material or lenticules on an exterior or outer surface of the sidewall and a registration framework or system on the interior or inner surface of the sidewall. The registration framework includes a side registration post with a pair of side registration shelves for receiving side edges of an inserted label. The framework includes upper and lower registration shelves extending about the periphery of the interior surface of the sidewall between a top and a bottom portion of the side post between the pair of side registration shelves. The registration shelves define a registration area having a shape corresponding to the label. Sealing flaps extend along the shelves for sealing the label within the cup. The label includes image strips covered by an adhesive layer for bonding with the sidewall surface.
Abstract:
A container for producing a graphical image. The container includes a container wall with front and rear portions. A label is included that extends about the circumference of the container with an inner surface contacting an exterior surface of the rear portion of the container wall and contacting an exterior surface of the front portion of the container wall. The label includes a block out grid made up of alternating block out lines and transparent viewing gaps on the outer or inner surface of the label. The view gaps provide a line of sight to subset of the segments of an interlaced image provided on or proximate to the rear portion of the container wall when the block out grid is positioned near the front portion of the container wall. The label may be used to create an air gap between the block out grid and the interlaced image.
Abstract:
An assembly for displaying an interlaced image. The assembly includes an interlaced image, which may be digitally or web printed for example, with sets of elongate image elements or slices. A lens arrays is provided with a first side proximate the interlaced image such as a planar surface and a second side distal the image with numerous lens sets. Each of the lens sets is paired with one of the sets of the image elements and includes a number of linear or elongate lenses that are each mapped to one to three image elements. The lenses are each configured to focus light from the subset of image elements to a viewer along a focus direction or line. The lenses are configured to provide a lens-specific viewing angle with a focus line, and the focus line to the paired image element subset differs from other lenses or is unique.
Abstract:
A plastic product having an insert of lenticular lens material integrally bonded or otherwise attached therein. In one embodiment, a method is used to fabricate a container, such as a conical cup, by first manufacturing or providing a sheet of lenticular material comprising layers of lens material and optical ridges and grooves and an ink layer printed on the flat side of the lens material. To protect the ink from the heat of molten or moldable plastic during later plastic processing, a thermally protective substrate is attached or bonded to the ink layer by using adhesives to attach a plastic substrate or by coating the ink with coating materials that thermally protect the ink from high temperatures. In one embodiment, the protective substrate is applied in a two step process of first placing a plastic hot melt onto a polyester or other material release liner and, after cooling of the hot melt, using heat and pressure to laminate or bond the hot melt plastic to the ink and then removing the liner. Lenticular inserts are cut out of the lenticular material sheets and the inserts are positioned within a mold where the container is formed by injection, blow, or other molding process. In this step, the substrate acts as a bonding surface as it contacts the molten plastic, melts, and then cools forming a bonding interface with the plastic used to form the container.
Abstract:
An assembly for fabricating a device for displaying an interlaced image. The method includes providing a film of transparent material and creating a lens array in the film by forming parallel lens sets on a first side of the film, and then bonding an interlaced image including sets of elongate image elements to a second side of the film. Each of the lens sets is configured with lenses for focusing light from one of the image elements in a particular paired set of image elements rather than all the elements as with lenticular material. The bonding of the interlaced image to the film may include printing the interlaced image directly onto the second side with the printing facilitated by the small lens array thickness. Lens array creating includes embossing the lens sets into the film with a flat die or cylinder/roller engraved with a reverse image of the lens array.