Abstract:
A plasma display panel (PDP) comprises a front substrate, a rear substrate, an addressing electrode, a common electrode, a first scan electrode, a second scan electrode, a first sustain electrode, and a second sustain electrode. The front substrate and a rear substrate are disposed apart in parallel, wherein a gas is filled there between. The addressing electrode positioned on the front substrate and the common electrode is positioned on the rear substrate and is orthogonal to the address electrode. The first scan electrode and the second scan electrode are positioned on the rear substrate, and are respectively at the first side and the second side of the common electrode. The first sustain electrode and the second sustain electrode are positioned on the rear substrate, and are respectively at the first side and the second side of the common electrode. A first pixel unit is defined by the address electrode, the common electrode, the first scan electrode, and the first sustain electrode. A second pixel unit is defined by the address electrode, the common electrode, the second scan electrode, and the second sustain electrode. A priming voltage is applied across the first scan electrode and the common electrode in an erasing period. Whether the first pixel unit is in bright status or not is determined by the address electrode and the first scan electrode in an addressing period. A plasma in the first pixel unit is driven by the first scan electrode, the first sustain electrode back and forth so as to sustain the bright status.
Abstract:
A plasma display panel of a surface discharge type is disclosed, which can positively generate the discharge for display while suppressing the power consumption even when the number of the electrodes is increased for attaining the high definition. A plurality of display electrode pairs are arranged in proximity with each other inside of a pair of substrates opposed to each other with a discharge gap formed therebetween. Each display electrode includes a main pattern extending in one direction, independent discharge patterns each formed for each luminous area corresponding to a display cell, and a plurality of auxiliary patterns for electrically connecting the main pattern and the discharge patterns to each other. The auxiliary patterns are higher in conductivity than the discharge patterns.
Abstract:
A front glass substrate and a back glass substrate are disposed, confronting each other to interpose a certain space therebetween. A discharge gas is enclosed within the space. The space is divided into a plural of display cells and a plural of priming discharge cells. Display data write and sustaining discharges for displaying an image are caused in display cells by priming effects from priming discharge cells. Display cell electrodes control discharges at display cells. A pair of priming discharge electrodes for causing discharges in priming discharge cells is provided independently of display cell electrodes, and is driven independently of display cells. The priming discharge cells are independently of display cells with respect to structure and driving control, and may discharge preliminarily by a sine wave driving method using a low drive frequency.
Abstract:
A plasma display panel that is capable of improving a discharge efficiency. In the panel, trigger electrodes are provided at the center of an upper substrate. Sustaining electrodes is provided at the upper substrate and is positioned at a layer different from the trigger electrodes. An address electrode is provided at a lower substrate opposed to the upper substrate in a direction crossing the trigger electrodes.
Abstract:
An electrode drive circuit performs interlaced scanning, ensuring that the phases of the sustaining pulse in odd-numbered lines and even-numbered lines among L1 to L8 between surface discharge electrodes are the reverse of each other. With this, when either odd-numbered lines or even-numbered lines are displayed, the voltages applied between the electrodes of the undisplayed lines are at 0, eliminating the necessity for partitioning walls on the surface discharge electrodes. In surface discharge electrodes, X electrodes are provided on the two sides of a Y electrode and the area between the Y electrode and the X electrode on one side is assigned a display line at an odd-numbered frame, and the area between the Y electrode and the X electrode on the other side is assigned a display line in an even-numbered frame. Alternate areas between the surface discharge electrodes are assigned as blind lines and a discharge light emission in the blind lines is blocked or incident light to the blind lines from the outside is absorbed. Address electrodes are provided for each monochromatic pixel column and selectively connected with the pads above them, performing simultaneous selection of lines.
Abstract:
In a flat type plasma a discharge display device which includes a discharge sustaining electrode group (X) having first and second discharge sustaining electrodes and an address electrode group (Y) having address electrodes, a plurality of plasma discharge parts (P) are formed for one discharge start part thereof, and the plasma discharge parts relating to one discharge start part are driven sequentially or simultaneously to emit a light, whereby it become possible that plasma display of high definition and high luminance is performed in the flat type plasma a discharge display device.
Abstract:
A front glass substrate and a back glass substrate are disposed, confronting each other to interpose a certain space therebetween. A discharge gas is enclosed within the space. The space is divided into a plural of display cells and a plural of priming discharge cells. Display data write and sustaining discharges for displaying an image are caused in display cells by priming effects from priming discharge cells. Display cell electrodes control discharges at display cells. A pair of priming discharge electrodes for causing discharges in priming discharge cells is provided independently of display cell electrodes, and is driven independently of display cells. The priming discharge cells are independently of display cells with respect to structure and driving control, and may discharge preliminarily by a sine wave driving method using a low drive frequency.
Abstract:
A front glass substrate and a back glass substrate are disposed, confronting each other to interpose a certain space therebetween. A discharge gas is enclosed within the space. The space is divided into a plural of display cells and a plural of priming discharge cells. Display data write and sustaining discharges for displaying an image are caused in display cells by priming effects from priming discharge cells. Display cell electrodes control discharges at display cells. A pair of priming discharge electrodes for causing discharges in priming discharge cells is provided independently of display cell electrodes, and is driven independently of display cells. The priming discharge cells are independently of display cells with respect to structure and driving control, and may discharge preliminarily by a sine wave driving method using a low drive frequency.
Abstract:
A plasma display panel and a driving method thereof that are capable of improving the brightness and the discharge efficiency. In the plasma display panel, an auxiliary electrode pair causes an auxiliary discharge. an area of the auxiliary electrode at the periphery of a discharge cell is wider than that at the center of the discharge cell. A sustaining electrode pair is arranged at each side of the auxiliary electrode pair to cause a sustaining discharge by utilizing the auxiliary discharge. In the driving method, wall charges concentrate on the center portion of the discharge cell during an auxiliary discharge generated between the auxiliary electrode pair. Then, a sustaining discharge is generated between the sustaining electrode pair by utilizing the wall charges produced by the auxiliary discharge.
Abstract:
A plurality of scanning electrodes and a plurality of sustaining electrodes parallel to each other are located on an inner face of a first glass substrate. Each of the scanning electrodes and each of the sustaining electrodes form a pair. A dielectric layer and a protection layer are formed on the first glass substrate in this order, covering the electrodes. A plurality of data electrodes perpendicular to the scanning electrodes and the sustaining electrodes are located on an inner face of a second glass substrate which is located opposed to the first glass substrate with a discharge space interposed therebetween. In an AC-type PDP having such a structure, at least one of the plurality of scanning electrodes and the plurality of sustaining electrodes are divided into a plurality of groups, and pulses having different phases are applied to the electrodes in different groups, thereby causing sustaining discharge. The scanning electrodes and the sustaining electrodes may be comb-like with teeth. The comb-like scanning electrodes and the comb-like sustaining electrodes are opposed to each other with a small gap interposed therebetween in the manner that the teeth thereof are in engagement with each other. In such a case, the data electrodes are located opposed to and in a longitudinal direction of the teeth of the scanning electrodes.