Abstract:
A self-retracting coiled cable having a variable length along a center line can include an outer insulator sleeve having a longitudinal axis. The self-retracting coiled cable can also include a spring material extending along the longitudinal axis of the outer insulator sleeve. The spring material can hold the outer insulator sleeve in a helical shape around the center line. The spring material can also allow the self-retracting coiled cable to expand upon an application of an axial force to an end of the self-retracting coiled cable, thereby increasing a length of the self-retracting coiled cable, and to retract upon a removal of the axial force from the end of the self-retracting coiled cable, thereby reducing the length of the self-retracting coiled cable. The self-retracting coiled cable can further include multiple wires extending along the longitudinal axis of the outer insulator sleeve and disposed symmetrically around the spring material.
Abstract:
A cable reel can improve transfer of power and data between a static frame and a cable wound around a rotatable element. The cable reel can use torsional springs to store mechanical energy and also to electrically couple the cable to a node within the static frame. This electrical coupling can be used to pass power. The cable reel can use a data transfer apparatus to transfer data between the frame and the cable. This apparatus may comprise two capacitive plates that together form a capacitor, one connected to the frame and one connected to the rotatable element. Alternatively, this apparatus may comprise an optically isolated zone in which an optical transmitter may communicate data to an optical receiver over free-space optical communications. The data can be transferred without physical contact between the frame and rotatable element, even while the rotatable element may rotate relative to the static frame.
Abstract:
A cable retractor is provided. In accordance with at least one embodiment, the cable retractor is articulate, comprising an articulate housing which comprises a cable stop housing pivotably coupled to a pulley housing. In accordance with at least one embodiment, the cable retractor also comprises a first pulley assembly coupled to the pulley housing, an end cap coupled to the pulley housing, a spring coupled to the end cap, and a second pulley assembly coupled to the spring. In accordance with at least one embodiment, the first pulley assembly and the second pulley assembly are disposed within the pulley housing. In accordance with at least one embodiment, a cable stop assembly is coupled to the cable stop housing. In accordance with at least one embodiment, the cable retractor is configured to be mountable to a cable access enclosure in a plurality of orientations.
Abstract:
The present invention is a speed control for a cable retractor. The cable retractor with which the speed control is used comprises a pulley that engages a cable that may be extended and retracted. A friction element configured to adjustably contact the cable adjacent to the pulley is attached to a movable linkage. The movement of the linkage is constrained to move along a predetermined path such that movement of the linkage along the path alters the distance between the friction element and the pulley. In one or more embodiments a cantilevered spring is attached to the linkage. An adjustable control, for example a thumbscrew, is configured to move the spring in relation to the linkage in a manner that alters the position of the friction element with respect to the cable and/or the pressure exerted by the friction element on the cable.
Abstract:
A cable reel can improve transfer of power and data between a static frame and a cable wound around a rotatable element. The cable reel can use torsional springs to store mechanical energy and also to electrically couple the cable to a node within the static frame. This electrical coupling can be used to pass power. The cable reel can use a data transfer apparatus to transfer data between the frame and the cable. This apparatus may comprise two capacitive plates that together form a capacitor, one connected to the frame and one connected to the rotatable element. Alternatively, this apparatus may comprise an optically isolated zone in which an optical transmitter may communicate data to an optical receiver over free-space optical communications. The data can be transferred without physical contact between the frame and rotatable element, even while the rotatable element may rotate relative to the static frame.
Abstract:
A cord dispensing apparatus configured to dispense a length of cord including an L-shaped housing. The apparatus includes a first spool and a second spool disposed within a pair of guide channels within the housing. At least one of the first spool and the second spool includes a central shaft and a free spinning exterior surface, wherein the exterior surface of one of the spools is configured to freely rotate. The apparatus includes a bias member coupled to the first spool and positioned and oriented such that the bias member resists displacement of the first spool in the direction of the second spool. The apparatus includes a cord wound between both the first spool and the second spool, wherein a head of the cord extends outside of the housing. The apparatus includes a mounting structure coupled to the housing and configured to mount the housing to a surface.
Abstract:
The cord accommodation apparatus of the present application includes a housing and a pulley mechanism. The pulley mechanism includes a plurality of movable pulleys. The movable pulleys are attached to the housing so as to be able to move freely in an up and down direction, and a middle portion of an electrical cord is wound around the movable pulleys. At least one of the plurality of movable pulleys moves upwards with respect to the housing when the electrical cord is pulled out from the accommodation apparatus, while by contrast the electrical cord is accommodated in the accommodation apparatus by this movable pulley, that. has previously moved upwards, moving downwards.
Abstract:
A retractor for storing a length of cord that includes a first and second pair of pulleys mounted at opposite ends of a frame. An intermediate section of a cord is stored in the frame. The stored cord section is at least partially wound over the pair of pulleys, and one pair of pulleys is slidably mounted for motion toward the other pair of pulleys. A damper is coupled to one of the second pair of pulleys, which engages the pulley to rotate about an axis to damp the rotary motion of one of the second pair of pulleys in such a manner that the intermediate storage section is in tension during retraction and withdrawal.
Abstract:
A mechanism for storing a length of cord that includes a first and second pair of pulleys mounted at opposite ends of a frame. An intermediate section of a cord is stored in the frame and has one end of the stored section fixed to the frame, with the other end extending from the frame. The stored cord section is at least partially wound over the pair of pulleys, and one pair of pulleys is slidably mounted for motion toward the other pair of pulleys. A damper is coupled to one of the second pair of pulleys, which engages the pulley to rotate about an axis to damp the rotary motion of one of the second pair of pulleys in such a manner that the intermediate storage section is in tension during retraction and withdrawal. The mechanism further includes a solenoid that is activated locally or remotely by a switch.
Abstract:
A power supply apparatus for a slidable structure which extends longitudinally, including: a pivotably-supported ring arm; a wiring harness having one end portion fixed to a tip portion of the ring arm and the other end portion fixed to a stationary structure; and an elastic member configured to bias the ring arm in a forward and upward direction. The ring arm is moved or rotated in a backward and downward direction while elastically deforming the elastic member due to tensile force of the wiring harness, when the slidable structure is moved forward toward its fully closed state. Also, the ring arm is moved or rotated in a forward and upward direction due to restoring force of the elastic member, when the slidable structure is moved backward toward its fully open state.