Abstract:
A foundation for a wind mill includes a circular or polygonal pedestal for supporting a wind mill tower and a plurality of ribs radiating radially outwardly from the pedestal, wherein the pedestal is divided into a plurality of circumferential sections, wherein a circumferential section and a rib are each integrally formed with one another as a precast concrete element, wherein the precast concrete elements are made from reinforced concrete including a first reinforcement structure, in particular reinforcement bars, embedded into the precast concrete elements, a second reinforcement structure is provided, which holds the precast concrete elements together and which is coupled to the first reinforcement structure.
Abstract:
In a method for reducing the NOx emissions of a rotary kiln of a clinker production plant, fuel supplied through a burner of the rotary kiln is burned along with primary air fed through the burner, wherein the primary air has a lower oxygen content and the primary air has an oxygen content reduced relative to that of the ambient air and a temperature increased relative to that of the ambient air, and the primary air is obtained by mixing ambient air with exhaust gas from the rotary kiln or from a heat exchanger connected to the rotary kiln and used for preheating raw meal. The primary air is further obtained by mixing with hot air, in particular waste air from a clinker cooler.
Abstract:
A method of treatment of aqueous liquid contaminated by pollutants, includes (i) mixing the contaminated aqueous liquid with a mineral binder in order to produce an homogeneous slurry, (ii) depositing the slurry, (iii) letting the slurry set and harden, wherein the mineral binder includes Portland cement, and wherein the contaminated aqueous liquid includes organic pollutants.
Abstract:
A method for treating polluted soils, includes mixing the soil with a hydraulic binder, wherein the hydraulic binder includes: as the only high-alumina clinker, a high-alumina clinker including more than 80 wt % of mayenite C12A7 phase or a mayenite isotope, the high-alumina clinker making up at least 70 wt % of the weight of the hydraulic binder; and 1 wt % to 30 wt %, relative to the total weight of the binder, of lime.
Abstract:
In a method for treating waste, in particular domestic waste, comprising the providing of a closed building for receiving the waste, the roof of the building being designed as a semi-permeable membrane, the filling of the building with the waste, the waste being piled into a mound, the performing of a biological drying of the waste with the supply of air, the air exhaust taking place through the semi-permeable membrane, and the discharging of the dried waste from the building, the filling of the building and the performing of the biological drying, and optionally discharging, of the waste are carried out with an unchanged arrangement of the roof, and the filling of the building is carried out by dropping the waste from a continuous conveying device.
Abstract:
In a process for the production of cement clinker, in which raw meal is preheated in a preheater (3) using the hot exhaust gases from a clinker kiln, and the preheated raw meal, which is optionally calcined in a calciner (4), is burned to clinker in the clinker kiln (2), wherein the preheater (3) comprises at least one string of a plurality of cyclone suspension-type heat exchangers (8, 9, 10), through which the kiln exhaust gas successively flows and in which the raw meal is preheated in stages, a partial stream of the kiln exhaust gas is diverted such that only a remaining residual stream of the kiln exhaust gas is utilized for preheating the raw meal.
Abstract:
In a method for treating waste, in particular domestic waste, comprising the providing of a closed building for receiving the waste, the roof of the building being designed as a semi-permeable membrane, the filling of the building with the waste, the waste being piled into a mound, the performing of a biological drying of the waste with the supply of air, the air exhaust taking place through the semi-permeable membrane, and the discharging of the dried waste from the building, the filling of the building and the performing of the biological drying, and optionally discharging, of the waste are carried out with an unchanged arrangement of the roof, and the filling of the building is carried out by dropping the waste from a continuous conveying device.
Abstract:
In a process for the production of cement clinker, in which raw meal is preheated in a preheater (3) using the hot exhaust gases from a clinker kiln, and the preheated raw meal, which is optionally calcined in a calciner (4), is burned to clinker in the clinker kiln (2), wherein the preheater (3) comprises at least one string of a plurality of cyclone suspension-type heat exchangers (8, 9, 10), through which the kiln exhaust gas successively flows and in which the raw meal is preheated in stages, a partial stream of the kiln exhaust gas is diverted such that only a remaining residual stream of the kiln exhaust gas is utilized for preheating the raw meal.
Abstract:
In a method for treating alternative, carbon-containing, low-caloric waste materials for use in furnace systems, in particular rotary tubular kilns for the production of clinker, the carbon-containing, alternative fuels are subjected to high-temperature gasification under anoxic conditions at temperatures above 1000° C., wherein water, water vapor or CO2 is injected to ensure a reaction forming CO and H2. The waste heat from a clinker cooler is used for the high-temperature gasification.
Abstract:
In a device for restricting hot, dust-laden gas flows and, in particular, dust-laden hot cooling air from clinker coolers (4) in a tertiary air duct (5) of a clinker kiln, the restrictor (6) is formed by segments (8) which are displaceable transversely to the direction of flow in a duct (5) and which are connectable with one another.