Abstract:
The present invention provides a method and apparatus of processing material having an organic content. The method comprises heating a batch of the material (“E”) in a batch processing apparatus (16) having a reduced oxygen atmosphere to gasify at least some of the organic content to produce syngas, The temperature of the syngas is then elevated and maintained at the elevated temperature in a thermal treatment: apparatus (18) for a residence time sufficient to thermally break down any long chain hydrocarbons or volatile organic compounds therein. The calorific value of the syngas produced is monitored by sensors (26) and, when the calorific value of the syngas is below a predefined threshold, the syngas having a low calorific value is diverted to a burner of a boiler (22) to produce steam to drive a steam turbine (36) to produce electricity (“H”). When the calorific value: of the syngas exceeds the predefined threshold syngas having a high calorific value is diverted to a gas engine (40) to produce electricity (F”).
Abstract:
Break down of waste materials such as animal parts is carried out by pyrolysis, gasification and combustion using a reactor vessel with a conical lower portion located within an exterior vessel. Feed material is deposited in continuous mode through an air lock at the top and falls by gravity alone into the lower cone portion. The cone geometry supports organic feedstocks, eliminating the requirement for grates or other combustion support systems. Organic material that may escape gasification and exit the bottom of the cone accumulates within the ash and carbon particle volume until burned. Carbon is sequestered from high energy feedstocks and is stored in a chamber below the gasification cone. This carbon supplements the energy output of lower energy feedstocks to maintain desired operating temperatures at all times.
Abstract:
The present invention provides a relatively small scale apparatus for gasifying solid fuel in which pyrolysis gas produced in a pyrolyzer by thermal-decomposition reaction of the solid fuel can be reformed to crude fuel gas. The apparatus comprises a solid fuel pyrolyzer 1 and a steam reformer 5, and thermally decomposes the solid fuel with a combustion reaction of a low oxygen density to produce the pyrolysis gas, and reforms the pyrolysis gas to produce the crude fuel gas. The pyrolyzer has an air inlet 18 positioned at a bottom part thereof and upwardly blowing combustion air into the pyrolyzer; a bed of pyrolyzer 30 located above the air inlet; and a pyrolysis gas exit positioned at an upper part of a body of the pyrolyzer and conducting the pyrolysis gas out of the pyrolyzer. The bed is made by a layered stack of many spherical heat-resistant materials 32 which form a number of narrow gaps for draft of the combustion air over the whole bed. The steam reformer has a reforming area 51 which produces the crude fuel gas by a steam reforming reaction of the pyrolysis gas, a pyrolysis gas inlet 55 which is in communication with the pyrolysis gas exit and which introduces the pyrolysis gas into the reforming area, a mixed gas inlet 54 introducing mixed gas of steam and air into the reforming area, a reformed gas effluent passage 70 for conducting reformed gas of the reforming area out of the reformer, and a permeable heat-barrier 60 positioned between the reforming area and the reformed gas effluent passage. The barrier is made by a layered stack of many spherical heat-resistant materials 62 which form a number of narrow gaps for draft of the pyrolysis gas and the mixed gas.
Abstract:
A batched materials transferring apparatus includes an elongated drum, a bucket disposed in the drum, and a drive arrangement operable to move the bucket relative to the drum. The drum defines an interior chamber having a longitudinal axis. The drum has a top (or side) opening formed in a first end portion thereof and a bottom opening formed in a second end portion thereof with the top (or side) opening being axially displaced from the bottom opening. The bucket has a side opening formed therein and is slidably movable relative to the drum along the longitudinal axis between the first and second end portions. The drive arrangement is mounted adjacent to the drum and connected to the bucket through one end of the drum. The drive arrangement is operable to move the bucket along an axial path relative to the longitudinal axis of the chamber between the first and second end portions of the drum to respective loading and dumping positions in the interior chamber in which the bucket is respectively aligned with the top (or side) and bottom openings of the drum. The drive arrangement also is operable to move the bucket along a circumferential path relative to the longitudinal axis of the chamber between receiving and discharging orientations such that at the loading position and receiving orientation the bucket communicates through its side opening with the inlet opening of the drum for receiving a batch of materials into the bucket, whereas at the dumping position and discharging orientation the bucket communicates through its side opening with the outlet opening of the drum for discharging the batch of materials from the bucket.
Abstract:
A system and method for drying, cleaning and upgrading coal and biomass solid fuel while integrating the steps with the normal on site steps in coal preparation for a utility boiler, such that boiler efficiency is improved and emissions are reduced. The present invention carefully sequences steps to employ latent heat from one step to the next and more efficiently bring the fuel up to or near ignition temperature. The present invention incorporates several previously related inventions to improve the heat content and cleanliness of the fuel, thus reducing fuel flow rate, ash, CO2, CO, NOx, sulfur, mercury, chlorine, particulate and other emissions, for the same or higher energy output.
Abstract:
This invention describes a process for a complete sequestration of carbon (CO2) from Municipal Solid Waste (MSW) to energy plants which produce Refuse Derived Fuel and the associated exhaust gases. The described process results in production of energy from the waste and disposal of the MSW with zero carbon emission.
Abstract:
The invention provides an apparatus for processing material such as organically coated waste and organic materials including biomass, industrial waste, municipal solid waste and sludge, comprising a processing chamber (2) for processing said material at an elevated temperature to produce syngas and a combustion chamber (4) having at least one burner therein for combusting syngas released by processing of said material. A conduit means (18) is provided between said combustion chamber and said processing chamber for carrying hot exhaust gasses from the combustion chamber (4) to said processing chamber (2) and at last one mirror (24) is arranged to reflect and concentrate sunlight thereby to cause the temperature within said processing chamber (2) to be raised. The apparatus also includes a syngas reservoir (66). A storage conduit (62) is provided for carrying syngas into said syngas reservoir (66) and a syngas feed line (68) is provided for feeding syngas from said reservoir to said combustion chamber (4).
Abstract:
In a method for treating alternative, carbon-containing, low-caloric waste materials for use in furnace systems, in particular rotary tubular kilns for the production of clinker, the carbon-containing, alternative fuels are subjected to high-temperature gasification under anoxic conditions at temperatures above 1000° C., wherein water, water vapor or CO2 is injected to ensure a reaction forming CO and H2. The waste heat from a clinker cooler is used for the high-temperature gasification.
Abstract:
In a wood-pellet cogeneration unit comprising a pellet feed, a combustion chamber, an ash removal device and a stirling engine, in order to achieve an optimum efficiency, provision is made for an exhaust gas recuperator (11) to preheat combustion air (10) and for wood pellets to be gasified with a portion of this hot air (13), for this portion (13) of the hot combustion air (10) to be directed above a grate (4) into a gasification combustion chamber (3a) and for the fuel gas (18) thus produced to be sucked downwards through the grate (4) together with the ash by a side channel blower (7), for the fuel gas (18) under the grate (4) to be displaced with a flow impulse of the rest (14) of the hot combustion air (10) in such a way that, firstly, a low lambda value close to the CO limit is maintained and, depending on the temperature of the combustion chamber (3b), the combustion at a central nozzle (19) is stabilized, or, with increasing temperature of the combustion chamber (3b), the state of flameless combustion increasingly appears, wherein a potential vortex (20) is produced in the combustion chamber (3b), said potential vortex (20) intensively mixing exhaust gas (6), fuel gas (18) and hot combustion air (14), such that fuel gas (18) and ash particles burn completely.
Abstract:
The invention discloses a vacuum cracking apparatus for a power battery and a cracking method thereof. The cracking device includes a cylinder and further includes a rolling device, a first sealing device, a cracking device, a second sealing device, a pyrolysis device and a third sealing device which are arranged from top to bottom. The cracking device for the power battery of the present invention is equipped with the first sealing device, the second sealing device and the third sealing device to isolate the cracking device from the pyrolysis device and be capable of realizing material transmission and gas isolation without interference with each other, so that gas stirring between an anaerobic zone and an aerobic zone is avoided; and by combing battery cracking and battery pyrolysis, with cracked gas discharged after cracking as a fuel for cracking and pyrolysis or preheating a pyrolysis device, resources are fully used.