Abstract:
The invention relates to a process plant (20) for converting a solid input material into a solid process product. The process plant (20) includes a calciner which is connected to a heat exchanger (26) and to which the input material can be continuously supplied for heating in order to transform the input material into an intermediate product. In the process plant (20) there is a kiln for converting the intermediate product into the process product by means of thermal treatment, raw gas being produced in doing so. The process plant (20) has a raw gas line system (50) comprising a raw gas line (50.1) which extends from the kiln to the calciner and through which the raw gas can flow from the kiln into the calciner for transferring raw gas heat to the input material, and includes a cooling device for cooling the process product after the thermal treatment in the kiln by transferring heat from the process product to a cooling gas containing oxygen, as a result of which a hot gas containing oxygen is generated. According to the invention, in the process plant (20) there is a waste air purification device for oxidizing raw gas, which is connected to the calciner via a raw gas line system (50), wherein a hot gas line system which is used for supplying hot gas generated from the cooling device is attached to the raw gas line system (50). The invention also relates to a method for converting a solid input material into a solid process product and to a method for purifying raw gas produced during the manufacture of cement.
Abstract:
The present application provides a baking equipment applied in a display panel manufacturing process. In the present application, the first and second pipes are communicated with each other and evenly distributed inside the baking plate, so that the heating liquid injected from the head end of the first pipe heats the baking plate evenly during flowing through the first and second pipes, which improves the uniformity of the baking temperature of the TFT array substrate to be baked by the baking plate, thereby ensuring the stability of the baking process of the TFT array substrate.
Abstract:
A pelletizing process, having two distinct serial stages. In the first stage, crude (or green) pellets of a given ore, or a mixture of ores (such as iron ore, manganese ore and other minerals), are produced, while in the second stage, a Device for Improvement of Crude Pellets, is used. The Device includes a slightly elastic and smooth surface, with reduced attrition rate, that may be striated, and that, encircled in itself, forms a cylindrical geometric hollow figure supported by a metallic structure, also cylindrical, with the set forming a finishing drum. The Device rotates with an inner and continuous charge of ore pellets, and can rearrange the structure of such pellets, improving their physical quality: compressive strength, sphericity and surface finishing, and assimilate fines generated during previous processes. This device allows application of diverse materials to the pellets to add required extra properties per specificities of subsequent industrial processes.
Abstract:
Disclosed is a process for the calcining and manufacturing of synthetic pozzolan with desirable color properties. Feed material is dried, crushed, and preheated in a drier crusher. The dry, crushed material is collected and fed to a calciner where it is heated to become a synthetic pozzolan. The synthetic pozzolan is then fed to a cooler where it is maintained for a least a portion of the cooling step in a reducing atmosphere.
Abstract:
In a method for utilizing phosphorus-containing alternative fuels in the cement clinker production, the alternative fuels are thermolyzed using waste heat from the cement clinker production process in a thermolysis reactor different from a rotary kiln of the cement clinker production process, the energy released thereby is supplied to the cement clinker production process, and the thermolysis residues of the phosphorus-containing alternative fuels are discharged from the thermolysis reactor, so that the thermolysis residues of the phosphorus-containing alternative fuels are mixed in the thermolysis reactor with cement kiln bypass products as halogen carriers and the heavy-metal halides produced are drawn off.
Abstract:
A combustion device includes a combustion chamber having an exhaust gas opening. The combustion chamber has a first region having a plurality of circular-segment-shaped cross-sections, which are parallel to each other and each have a circle centre point. A connection of the circle centre points lies substantially on an axis. A gas supply line is connected to the combustion chamber in such a way that a discharge point is formed, that the combustion chamber has a mixing region in the region of the discharge point for mixing gas supplied via the gas supply line with gas rotating in the combustion chamber, and that the discharge point is arranged on a bottom side of the combustion chamber in an operating position, wherein gas supplied via the gas supply line flows against the first region tangentially from below.
Abstract:
A kiln comprising a cylindrical drum (11) arranged to rotate about a generally horizontal central axis, the drum configured such that rotation will cause particulate material to flow from one end (13) of the drum to the other end (15). The one end being closed by an end assembly (23) fixed relative to a support structure. An inner face of the drum provides a plurality of ports (29) spaced about, and opening into, an interior of the drum,. The ports (29) being connected to the end assembly (23) via a set of passageways (27). The end assembly (23) having an opening (25) connected to a source of air (31) and positioned such that, on rotation of the drum, one or more passageways come into fluid communication with the opening for limiting air flow to the ports.
Abstract:
The Invention relates to an apparatus or installation for producing active carbon, in particular by carbonization and subsequent activation of polymeric, organic, preferably sulphonated, starting materials, wherein the apparatus or installation comprises optionally a drying device for drying the starting materials, optionally a sulphonating device, arranged downstream of the optionally present drying device, for sulphonating and/or peptizing the optionally previously dried starting materials, a carbonizing device, arranged downstream of the optionally present drying device and/or the optionally present sulphonating device, for carbonizing the optionally previously dried and/or sulphonated and/or peptized starting materials, as well as an activating device, arranged downstream of the carbonizing device, for activating the starting materials previously carbonized in the carbonizing device, wherein the apparatus or installation also comprises at least one exhaust-gas treatment device for treating the exhaust gases formed in the carbonizing device and/or in the activating device during operation.
Abstract:
The invention relates to a process for manufacturing cement clinker in a plant having a cyclone preheater, a precalcination reactor, a rotary furnace and a clinker cooler. In the process, the flue gases from the furnace are conducted to the precalcination reactor, or even to the cyclone preheater. According to the invention, the precalcination reactor is fed with an oxygen-rich gas, the nitrogen content of which is less than 30%, constituting the sole oxygen source for said reactor, and a portion leaving the cyclone preheater is recycled into the plant so as to obtain a suitable flux necessary for suspending matter in said preheater, while the other portion, rich in carbon dioxide, is adapted for the purpose of a treatment for limiting the amount of carbon dioxide discharged into the atmosphere, such as particularly sequestration.
Abstract:
The present invention relates to a furnace (10), its method of operation and control. The invention overcomes problems associated with existing furnaces by improving the recovery rate of waste metal.In a preferred embodiment the furnace (10) comprises a cylindrical body of constant internal diameter. The furnace body (12) is mounted on a frame (15) pivoted to a ground members (16a and 16b), the furnace body (12) is adapted to be reclined or inclined or at various angles (α and β); a burner (30) to heat the furnace, and a door (19a, 19b) for sealing an open end (14).As the internal walls of the furnace body (12) are of a constant diameter, it is no longer necessary to incline the furnace (10) to such a degree in order to pour molten metal, because there is no narrow neck (which previously acted like a weir).In a preferred embodiment combustion air is routed through the door hinge to the burner (30). As a result the air/fuel delivery system has gas tight rotary and elbow joints is attached to the furnace (10) and tilts and moves with the furnace (10).An artificial intelligence system monitors process variables and controls the operation of the furnace (10).