Abstract:
A fluid flow probe including: first, second and third pressure sensors; a first port for communicating a first pressure to the first pressure sensor; a second port for communicating a second pressure to the second pressure sensor, the second port being substantially oppositely disposed with respect to the first port, a third pressure port suitable for communicating a static pressure to the third pressure sensor; first and second outputs electrically coupled to the first and second pressure sensors, respectively, one of the first and second outputs indicative of a total pressure and the other of the outputs indicative of a base pressure; and, a third output electrically coupled to the third pressure sensor and indicative of the static pressure.
Abstract:
A semiconductor filter is provided to operate in conjunction with a differential pressure transducer. The filter receives a high and very low frequency static pressure attendant with a high frequency low dynamic pressure at one end, the filter operates to filter said high frequency dynamic pressure to provide only the static pressure at the other filter end. A differential transducer receives both dynamic and static pressure at one input port and receives said filtered static pressure at the other port where said transducer provides an output solely indicative of dynamic pressure. The filter in one embodiment has a series of etched channels directed from an input end to an output end. The channels are etched pores of extremely small diameter and operate to attenuate or filter the dynamic pressure. In another embodiment, a spiral tubular groove is found between a silicon wafer and a glass cover wafer, an input port of the groove receives both the static and dynamic pressure with an output port of the groove providing only static pressure. The groove filters attenuate dynamic pressure to enable the differential transducer to provide an output only indicative of dynamic pressure by cancellation of the static pressure.
Abstract:
A transducer including a transducer body, a sensor associated with the transducer body, an electrical connector assembly fastened to an end of the transducer body, and a vibration damper system disposed between the end of the transducer body and the electrical connector assembly. The vibration damper system being operative for attenuating vibrational acceleration and amplification forces experienced by the electrical connector assembly when the transducer is exposed to vibration.
Abstract:
A multi-load beam transducer includes a fixed member, a movable member, and a plurality of load beams positioned between the members, each beam separated by a given distance normal from each other and positioned about a longitudinal axis between the members. The plurality of load beams are responsive to forces exerted on the members. The transducer further includes a plurality of resistors positioned on selected ones of the plurality of load beams. The resistors have a resistance value which varies with an applied force with the plurality of resistors electrically connected and operable to determine the value of the applied forces.
Abstract:
An electronic single pole double throw switch has two states. In each state, one of the lamps is on and the other lamp is off. In the electronic switch, the voltage, which is at the output terminal of the lamp that is off is utilized to drive a low voltage regulator which operates electronic circuitry associated with the electronic switch.
Abstract:
A beam transducer employs a linear bearing which surrounds the active element of the transducer which is the beam. One end of the bearing is welded to the inactive end of the load beam. The other end of the bearing is not welded, allowing the active end of the beam to move freely. The linear bearing eliminates friction and jamming which will cause inaccurate load measurement, but the ability to allow the active element to move freely with one end free enables the load beam sensitivity to be maximized. The free end is sealed environmentally by employing a flexible metal membrane or diaphragm which is welded between the bearing end and the load beam. This configuration provides a hermetic seal to protect the load beam and the sensitive gages which are placed on the load beam.
Abstract:
There is disclosed a transducer with an integral switch for wireless electronics. Essentially, the transducer contains a housing which includes a sensor device. The sensor device may be a piezoresistive Wheatstone bridge arranged in a conventional manner. The output of the bridge is coupled to a typical amplifying circuit or an analog-to-digital converter whose signal is coupled to a suitable transmitting means. The signal provided by the Wheatstone bridge is transmitted through RF, infrared or some other wireless transmission scheme to a remote location. Such transmissions schemes are well known. Associated with the sensor and secured to the sensor housing, is a push button switch which is wired in series with a battery. The battery operates to energize the sensor, including all the electronics when the sensor is in placed in a pressure sensing position. When the pressure is placed in a pressure sensing position, the push button switch, is actuated to apply operating bias to the transducer device.
Abstract:
A pressure transducer capable of detecting leakage of media into the pressure transducer. The pressure transducer comprises a spacer having first and second ends. A first header assembly containing a first pressure sensor for measuring a pressure of the media, is sealingly disposed at the first end of the spacer. A second header assembly containing a second pressure sensor, is sealingly disposed at the second end of the spacer. The spacer, first header assembly, and second header assembly form a hermetically sealed leak detection cavity for capturing the media that leaks past the first header assembly. In operation, the media captured in the leak detection cavity generates a pressure which is sensed by the second pressure sensor.
Abstract:
A novel method for interconnecting leads in a high pressure transducer without the use of solder employs a ceramic disc containing a number of through holes. Each hole has a tube inserted therein, which tubes are connected to the disc by brazing or a high temperature attachment. Each tube protrudes from both sides of the ceramic. The ceramic is coated in appropriate areas with molymanganese film, which is over plated with gold. This overcoat forms a brazed compound surface attached to the tubes of the ceramic. A semiconductor pressure transducer has output leads which are inserted through the ceramic into each tube. The other side end of the tube receives high temperature wires from a suitable connecting device. Each tube is then crimped and spot-welded to hold both the lead from the transducer and the high temperature leads to produce a strong bond without the use of solder. The header itself it typically welded to a pressure point.
Abstract:
The present invention relates to a system for detecting aerodynamic instabilities in a jet turbine engine having a pressure transducer mounted in the engine. The pressure transducer, welded to a circuit in signal communication with a controller, is adapted to send measured pressure readings from air in a combustion chamber to the controller. The controller, located in spaced apart relation from the engine, is adapted by software to detect pressure patterns from the pressure signals generated by the transducer that are indicative of a stall or surge. A series of fuel and air valves located with compression and combustion chambers of the engine are in signal communication with the controller. The controller in response to detecting pressure signals indicating a stall or surge is operative to signals in the valves to change the air flow, air angle, fuel flow or speed to reduce the possibility of a stall or surge.