Abstract:
A transflective display. The transflective display includes a first substrate, a first electrode formed thereon, a second substrate having a reflective area and a transmissive area opposite to the first substrate, a second electrode formed on the second substrate opposite to the first electrode, and a liquid crystal layer including a plurality of liquid crystal molecules and polymers disposed between the first electrode and the second electrode. The invention also provides a method of fabricating the transflective display.
Abstract:
Disclosed is a liquid crystal display panel having one or more light holes in the reflection region for improving the aperture ratio and color uniformity at different view angles. The light holes are formed at the reflection region having an alignment protrusion as a center. The light holes are substantially arranged around the alignment protrusion with substantially identical total area, or at least one light hole formed at the reflection region having the alignment protrusion in the light hole as a center.
Abstract:
A pixel electrode structure of a transflective liquid crystal display comprises a reflective electrode laid on a surface of the gate-insulating layer, a dielectric layer covering the reflective electrode, and a transmissive electrode on the dielectric layer and connected to the reflective electrode.
Abstract:
A pixel device of a transflective-type LCD comprises an upper panel, a lower panel, a liquid crystal layer, and a liquid crystal film. The lower panel is assembled beneath the upper panel, and an upper surface of the lower panel is divided into a reflective region and a naked transmission region. The liquid crystal layer is interposed between the upper panel and the lower panel. The liquid crystal film is positioned above the liquid crystal layer to compensate possible retardation resulted from the liquid crystal layer.
Abstract:
A liquid crystal display panel and a liquid crystal display device incorporating the same are provided. The liquid crystal display panel includes a first substrate, a second substrate and a liquid crystal layer. The first substrate includes a first base, a dielectric layer and a storage capacitor. The storage capacitor includes a reflective electrode. The dielectric layer covers at least part of the storage capacitor. The second substrate is substantially paralleled to the first substrate. The second substrate includes a second base, a black matrix and a common electrode. The black matrix corresponds to the storage capacitor. The black matrix includes an opening corresponding to the reflective electrode. The opening is provided to let an outside light enter into the liquid crystal display panel such that the reflective electrode reflects the outside light to provide a light source to the liquid crystal display panel.
Abstract:
A transflective liquid crystal display having a plurality of pixels, each pixel having a plurality of color sub-pixels, each sub-pixel having a transmission area associated with a first charge storage capacitance and a reflection area associated with a second storage capacitance. In the sub-pixel, a data line, a first gate line, a second gate line and a common line are used to control the operational voltage on the liquid crystal layer associated with the sub-pixel. The first and second gate lines are separately set at a first state and a second state. The ratio of the first charge storage capacitance to the second charge storage capacitance can be controlled according to the states of the gate lines. The second charge storage capacitance is provided by two capacitors connected in parallel through a switching element which can be open or closed according to the states of the gate lines.