Abstract:
System and method embodiments are provided to support network communications with groups of UEs. The embodiments include a two-level group-based hybrid-automatic repeat request (HARQ) mechanism and acknowledgement (ACK)/negative ACK (NACK) feedback. An embodiment method includes receiving, at a UE within a virtual multi-point (ViMP) comprising UEs, a data packet for a target UE (TUE) that is broadcasted from a base station (BS) to the Vi MP node, decode the data packet, and upon successfully decoding the data packet, broadcasting the data packet to the UEs within the ViMP node until a timer pre-established by the BS expires or an ACK message is received from the TUE or the ViMP node. In an embodiment, broadcasted data received in the ViMP node is re-broadcasted upon receiving a negative acknowledgement (NACK) message from the TUE, a beacon UE, or any of the UEs within the ViMP node.
Abstract:
An embodiment method at a network device for scrambling a downlink reference signal for a UE for demodulation of a downlink random access message during a random access procedure to the network includes scrambling the downlink reference signal using one of a temporary UE ID provided to the UE during the random access procedure, a random access ID generated during the random access procedure, or a dedicated UE ID assigned by the network.
Abstract:
Embodiments of this disclosure improve the reliability of blind decoding when beamforming is used by having a user equipment (UE) receive a single downlink control information (DCI) message with different transmission and/or reception parameters. In some embodiments, a UE receives more than one set of configuration parameters, where any two sets of configuration parameters out of the more than one set of configuration parameters have at least one different parameter. The UE may receive two sets of configuration parameters each having a different transmission modes, but the same search space type. Additional examples are also provided.
Abstract:
A New Radio (NR) control signal that indicates one or more Long Term Evolution (LTE) network parameters may be transmitted to NR UEs to enable the NR UEs to identify which resources carry LTE signal(s). The NR UEs may then receive one or more NR downlink signals over remaining resources in a set of resources without processing those resources that carry LTE signal(s). The NR downlink signals may have a zero power level, or otherwise be blanked, over resources that carry the LTE signal(s).
Abstract:
A method embodiment includes compiling, by a network device, a cooperation candidate set (CCS) and determining a cooperation active set (CAS). The CCS includes a plurality of potential cooperating user equipment (CUEs) for selection to the CAS, and the plurality of potential CUEs is selected from a plurality of user equipment (UEs) in the network. The CAS is a set of CUEs selected from the CCS. A target user equipment (TUE) and the set of CUEs form a virtual multipoint transceiver.
Abstract:
Transporting different sets of encoded packets generated from the same traffic flow over the respective licensed and unlicensed bands may provide bandwidth utilization efficiencies in addition to enabling more robust data streaming. More specifically, a transmit point may encode a traffic flow using a fountain code to obtain encoded packets, and then transmit different subsets of the encoded packets over the respective licensed and unlicensed bands. The fountain code may be applied at the physical layer, the media access control (MAC) layer, the radio link control (RLC) layer, or the application layer. The respective subsets of packets may be transmitted over the licensed and unlicensed bands at different rates. Different coding rates may be used over the respective bands.