Abstract:
OLED panels and techniques for fabricating OLED panels are provided. Multiple cuts may be made in an OLED panel to define a desired shape, as well as the location and shape of external electrical contacts. The panel may be encapsulated before or after being cut to a desired shape, allowing for greater flexibility and efficiency during manufacture.
Abstract:
The device consists of measuring aspects of human activity or emotion and then communicating that information to an adjustable lighting device or electronic display (as part of a phone, tablet, computer etc) such that the color temperature (or luminance) of the display or lamp is adjusted to match the mood of the user e.g. warmer in the evening close to the end of the day, and cooler in the morning for productivity.
Abstract:
Devices are provided that include a flexible OLED panel and a connection between points of the flexible OLED panel that causes the flexible OLED panel to be disposed in a non-planar configuration. Alternatively or in addition, the connection may be a flexible component connected to the flexible OLED panel, which is configured to maintain the flexible OLED panel in the non-planar shape.
Abstract:
Arrangements of pixel components that allow driving three or less of four or more sub-pixels to emit an original color signal are disclosed. A first projection of the original color signal may be projected onto the two sub-pixel's color space. The first projection may then be projected onto a second projection corresponding to the color space of a third pixel. The third pixel may be driven based on the second projection only two of the remaining at least three sub-pixels may be driven based on the third pixel being driven.
Abstract:
A display includes one or more organic light emitting device panels. Each organic light emitting device panel has an array of single-color subpixel areas of different colors extending over an active area thereof arranged in a predetermined pattern by color. At least one of the subpixel areas in the predetermined pattern that would otherwise be designated as a subpixel area through which blue light is emitted based on a position thereof in the predetermined pattern being predetermined to be non-emissive. A volume of the organic light emitting device panel associated with the at least one predetermined non-emissive subpixel area is non-emissive and includes a via or a functional electronic component therein.
Abstract:
Arrangements of pixel components that allow for full-color devices, while using emissive devices that use blue color altering layers in conjunction with blue emissive regions, that emit at not more than two colors, and/or that use limited number of color altering layers, are provided. Devices disclosed herein also may be achieved using simplified fabrication techniques compared to conventional side-by-side arrangements, because fewer masking steps may be required.
Abstract:
A transparent emissive device is provided. The device may include one or more OLEDs having an anode, a cathode, and an organic emissive layer disposed between the anode and the cathode. In some configurations, the OLEDs may be non-transparent. The device may also include one or more locally transparent regions, which, in combination with the non-transparent OLEDs, provides an overall device transparency of 5% or more. The device also may include a double-sided display capable of displaying different, identical, or related images on each side of the device.
Abstract:
A transparent emissive device is provided. The device may include one or more OLEDs having an anode, a cathode, and an organic emissive layer disposed between the anode and the cathode. In some configurations, the OLEDs may be non-transparent. The device may also include one or more locally transparent regions, which, in combination with the non-transparent OLEDs, provides an overall device transparency of 5% or more.