Abstract:
A robot cleaning device includes a debris detecting unit. The robot cleaning device includes a body, a driving unit to enable the body to travel, a drum brush unit provided at the body, to sweep up debris, using a brush and a rotating drum, a debris box to store the debris swept up by the drum brush unit, a debris detecting unit to detect whether debris has been introduced into the debris box through the drum brush unit during a cleaning operation, and a controller to determine whether debris is introduced into the debris box and whether debris has been accumulated in the debris box in a predetermined amount, based on introduction or non-introduction of debris detected by the debris detecting unit.
Abstract:
A robot cleaner provided with a shutter to open or close an inlet of a dust box when the dust box is separated from a body of the robot cleaner. Another robot cleaner, which docks with an automatic exhaust station, is also disclosed, together with the automatic exhaust station. The latter robot cleaner includes a shutter to be automatically opened by air discharged from the automatic exhaust station in a docked state of the robot cleaner to exhaust dust from the dust box, in order to allow even heavy dust to be easily exhausted.
Abstract:
In a cleaning system, dust stored in a dust box is suspended in air introduced into the dust box through a first opening formed through a robot cleaner, and is then discharged to a second opening formed through a maintenance station through the first opening of the robot cleaner.
Abstract:
In a cleaning system, dust stored in a dust box is suspended in air introduced into the dust box through a first opening formed through a robot cleaner, and is then discharged to a second opening formed through a maintenance station through the first opening of the robot cleaner.
Abstract:
Disclosed is a robot cleaner system having superior functions of sucking dust and exhausting dust to a docking station. The robot cleaner includes a dust suction port to suck dust, a dust collecting chamber to collect dust introduced through the dust suction port, a dust exhaust port to exhaust dust collected in the dust collecting chamber to the docking station, a connection path extending from the dust suction port to the dust exhaust port in adjacent to the dust collecting chamber, and a valve device provided between the connection path and the dust collecting chamber, an opening/closing of the valve device allowing the dust collecting chamber to selectively communicate with the dust suction port or the dust exhaust port according to a pressure difference between the dust collecting chamber and the connection path.
Abstract:
A cleaning robot system includes a robot and a robot maintenance station. The robot includes a chassis, a drive system configured to maneuver the robot as directed by a controller, and a cleaning assembly including a cleaning assembly housing and a driven cleaning roller. The robot maintenance station includes a station housing and a docking platform configured to support the robot when docked. A mechanical agitator engages the roller of the robot with the robot docked. The agitator includes an agitator comb having multiple teeth configured to remove accumulated debris from the roller as the agitator comb and roller are moved relative to one another. The robot maintenance station includes a collection bin arranged to receive and hold debris removed by the mechanical agitator.
Abstract:
Disclosed is a robot cleaner system having superior functions of sucking dust and exhausting dust to a docking station. The robot cleaner includes a dust suction port to suck dust, a dust collecting chamber to collect dust introduced through the dust suction port, a dust exhaust port to exhaust dust collected in the dust collecting chamber to the docking station, a connection path extending from the dust suction port to the dust exhaust port in adjacent to the dust collecting chamber, and a valve device provided between the connection path and the dust collecting chamber, an opening/closing of the valve device allowing the dust collecting chamber to selectively communicate with the dust suction port or the dust exhaust port according to a pressure difference between the dust collecting chamber and the connection path.
Abstract:
A robot cleaner system having an improved docking structure between a robot cleaner and a docking station, which is capable of an easy docking operation of the robot cleaner and preventing loss of a suction force generated in the docking station. The robot cleaner includes a docking portion to be inserted into a dust suction hole of the docking station upon a docking operation. The docking portion may be a protrusion, which protrudes out of a robot body to be inserted into a dust suction path defined in the docking station, the protrusion communicates a dust discharge hole of the robot cleaner with the dust suction path of the docking station. The robot cleaner system includes a coupling device to keep the robot cleaner and the docking station in their docked state. The coupling device is configured to have a variety of shapes.
Abstract:
A robot cleaning system is capable of performing automatic cleaning and manual cleaning with a minimal number of devices. The robot cleaning system includes a first cleaning unit to perform automatic cleaning while moving by itself in an area to be cleaned, and a second cleaning unit to perform manual cleaning while being coupled to the first cleaning unit as it is moved by a user in an area to be cleaned. Each of the first and second cleaning units contains a blower and dust collector to vacuum. The first cleaning unit has a dust outlet to deliver dust to the second cleaning unit when the first cleaning unit is coupled to the second cleaning unit via the dust outlet of the first cleaning unit, a connector, and the connection port of the second cleaning unit.
Abstract:
System of guidance and positioning relative to a fixed station (1) for an autonomous mobile robot (7) utilizing at least a directional infra-red beam (2′) emitted by the fixed station, the mobile robot being provided with a directional system of detection (10a, 10b) of infra-red emission connected to a microcomputer incorporated in the said robot, the robot moving on a work surface in an essentially random manner, the microcomputer (44) including an algorithm able to control the return to fixed station (1) by displacement of the robot (7) towards the direction of emission of said infra-red beam (2′), characterized in that the infra-red beam (2′) is a narrow directional beam and in that the system of detection (10a, 10b) is located on a frame at the center of rotation of the robot (7), oriented in the direction of movement of the robot, precise positioning in the fixed station (1) being carried out by rotation of the machine around a vertical axis according to an algorithm based on the detection of the narrow beam (2′).