Abstract:
An autonomous floor cleaning robot includes a body, a controller supported by the body, a drive supporting the body to maneuver the robot across a floor surface in response to commands from the controller, and a pad holder attached to an underside of the body to hold a removable cleaning pad during operation of the robot. The pad includes a mounting plate and a mounting surface. The mounting plate is attached to the mounting surface. The robot includes a pad sensor to sense a feature on the pad and to generate a signal based on the feature, which is defined in part by a cutout on the card backing. The mounting plate enables the pad sensor to detect the feature. The controller is responsive to the signal to perform operations including selecting a cleaning mode based on the signal, and controlling the robot according to a selected cleaning mode.
Abstract:
An autonomous cleaning robot includes a drive operable to move the autonomous cleaning robot across a floor surface; a cleaning assembly configured to clean the floor surface; a receiver configured to receive an indication of cat activity in a cat box; and a controller configured to navigate the autonomous cleaning robot to the cat box to execute a cleaning mission in response to the received indication of cat activity.
Abstract:
A bag-based filtering device for collecting debris from a cleaning robot via a debris evacuation station includes a filter bag configured to separate at least the portion of the evacuated debris from a flow of air generated by the evacuation station. The filtering device includes a conduit extending inward from an opening of the filter bag into the receptacle. The conduit is configured to pneumatically connect a receptacle of the filtering device with an inlet of the filtering device to direct the flow of air generated by the evacuation station through the filter bag to separate at least the portion of the evacuated debris from the flow of air.
Abstract:
An evacuation station includes a base and a canister removably attached to the base. The base includes a ramp having an inclined surface for receiving a robotic cleaner having a debris bin. The ramp defines an evacuation intake opening arranged to pneumatically interface with the debris bin. The base also includes a first conduit portion pneumatically connected to the evacuation intake opening, an air mover having an inlet and an exhaust, and a particle filter pneumatically the exhaust of the air mover. The canister includes a second conduit portion arranged to pneumatically interface with the first conduit portion to form a pneumatic debris intake conduit, an exhaust conduit arranged to pneumatically connect to the inlet of the air mover when the canister is attached to the base, and a separator in pneumatic communication with the second conduit portion.
Abstract:
An evacuation station includes a base and a canister removably attached to the base. The base includes a ramp having an inclined surface for receiving a robotic cleaner having a debris bin. The ramp defines an evacuation intake opening arranged to pneumatically interface with the debris bin. The base also includes a first conduit portion pneumatically connected to the evacuation intake opening, an air mover having an inlet and an exhaust, and a particle filter pneumatically the exhaust of the air mover. The canister includes a second conduit portion arranged to pneumatically interface with the first conduit portion to form a pneumatic debris intake conduit, an exhaust conduit arranged to pneumatically connect to the inlet of the air mover when the canister is attached to the base, and a separator in pneumatic communication with the second conduit portion.
Abstract:
A self-propelled cleaner including: a movement unit configured to move a housing; a blower unit configured to generate an air current for sucking dust on a floor surface into the housing; a dust detection unit configured to detect dust contained in the air current; and a control unit configured to control the movement unit and/or the blower unit to select a cleaning mode according to a detection result of the dust detection unit, wherein the control unit is capable of changing a threshold value for selecting the cleaning mode.
Abstract:
An autonomous floor cleaning robot includes a body, a controller supported by the body, a drive supporting the body to maneuver the robot across a floor surface in response to commands from the controller, and a pad holder attached to an underside of the body to hold a removable cleaning pad during operation of the robot. The pad includes a mounting plate and a mounting surface. The mounting plate is attached to the mounting surface. The robot includes a pad sensor to sense a feature on the pad and to generate a signal based on the feature, which is defined in part by a cutout on the card backing. The mounting plate enables the pad sensor to detect the feature. The controller is responsive to the signal to perform operations including selecting a cleaning mode based on the signal, and controlling the robot according to a selected cleaning mode.
Abstract:
A self-propelled cleaner including: a movement unit configured to move a housing; a blower unit configured to generate an air current for sucking dust on a floor surface into the housing; a dust detection unit configured to detect dust contained in the air current; and a control unit configured to control the movement unit and/or the blower unit to select a cleaning mode according to a detection result of the dust detection unit, wherein the control unit is capable of changing a threshold value for selecting the cleaning mode.
Abstract:
In a cleaning system, dust stored in a dust box is suspended in air introduced into the dust box through a first opening formed through a robot cleaner, and is then discharged to a second opening formed through a maintenance station through the first opening of the robot cleaner.
Abstract:
A method for controlling a cleaning device is presented, which includes the following steps. A cleaning device includes a control unit, a fan module, an optical emitter, and an optical sensor. The optical emitter and the optical sensor are located in an air inlet of the fan module. The control unit is preset with a first impedance value (Z1), a second impedance value (Z2), and a threshold, where 0