Abstract:
A defect inspection apparatus includes a movable stage for mounting a substrate having circuit patterns as an object of inspection, an irradiation optical system which irradiates a slit-shaped light beam from an oblique direction to the circuit patterns of the substrate, a detection optical system which includes an image sensor for receiving reflected/scattered light from the substrate by irradiation of the slit-shaped light beam and converting the received light into a signal, and an image processor which processes the signal. The irradiation optical system includes a cylindrical lens and a coherency reduction optical system, which receives the light beam and emits a plurality of slit-shaped light sub-beams which are spatially reduced in coherency in a light-converging direction of the cylindrical lens. The cylindrical lens focuses the plurality of slit-shaped light sub-beams into the slit-shaped light beam irradiated to the surface of the substrate.
Abstract:
The invention provides a cellular mobile communication system that efficiently performs high-speed communication with mobile terminals within the cell using a single frequency. The mobile communication system sequentially performs polling communication control to plural terminals within the own cell, based on a control of a base station positioned near the center of the cell. With this arrangement, the terminals within the cell can communicate with each other using a single frequency.
Abstract:
An optical transmission apparatus comprising a first detector for detecting the power of the supervisory signal light separated from received wavelength-division multiplexed signal lights; a second detector for detecting the power of the wavelength-division multiplexed signal lights after the separation of the supervisory signal light; a gain-controlled type optical amplifier for amplifying the wavelength-division multiplexed signal lights; an optical attenuator coupled to the amplifier; and a control unit for controlling the optical amplifier and the optical attenuator so as to keep the output level of the wavelength-division multiplexed signal lights to a predetermined target value, wherein the control unit restrains automatic output level control by the optical attenuator when the supervisory signal light power fluctuates within its permissible range and fluctuations in the signal light power have deviated from its permissible range.
Abstract:
An apparatus for inspecting a substrate surface is provided, which includes illumination optics for irradiating the substrate surface linearly with rectilinearly polarized light from an oblique direction, detection optics for acquiring images of the substrate surface, each of the images being formed by the light scattered from the light-irradiated substrate surface, and means for comparing an image selected as an inspection image from the plurality of substrate surface images that the detection optics has acquired to detect defects, and another image selected from the plural images of the substrate surface as a reference image different from the inspection image; the illumination optics being formed with polarization control means for controlling a polarizing direction of the light according to a particular scanning direction of the substrate or a direction orthogonal to the scanning direction.
Abstract:
A lever assembly holds a wiper strip, which directly wipes a wiping surface. The lever assembly includes a plurality of levers, which are connected together in tournament style. An axial length of the lever assembly is shorter than an axial length of the wiper strip. A cover member receives the lever assembly, and opposed ends of the cover member hold the wiper strip. The cover member includes a plurality of cover portions, which are formed separately from one another.
Abstract:
An authentication device 40 which is used for a thin client 30 or the like encrypts address information of the biological information management apparatus 10 that is an access destination of the thin client 30 with biological information of a user of the thin client 30, and stores the encrypted address information. When the authentication device 40 receives the biological information of the user of the thin client, the authentication device 40 decrypts the encrypted address information with the received biological information, and outputs the decrypted address information to the thin client 30. When the thin client 30 accesses a biological information management apparatus 10 by using the address information and succeeds in an authentication, the thin client 30 receives profile information of a server 20 from the biological information management apparatus 10. The thin client 30 then logs in the server 20 by using the profile information.
Abstract:
A method and apparatus for detecting defects are provided for detecting harmful defects or foreign matter with high sensitivity on an object to be inspected with a transparent film, such as an oxide film, by reducing noise due to a circuit pattern. The apparatus for detecting defects includes a stage part on which a substrate specimen is put and which is arbitrarily movable in each of the X-Y-Z-θ directions, an illumination system for irradiating the circuit pattern with light from an inclined direction, and an image-forming optical system for forming an image of an irradiated detection area on a detector from the upward and oblique directions. With this arrangement, diffracted light and scattered light caused on the circuit pattern through the illumination by the illumination system is collected. Furthermore, a spatial filter is provided on a Fourier transform surface for blocking the diffracted light from a linear part of the circuit pattern. The scattered and reflected light received by the detector from the specimen is converted into an electrical signal. The converted electrical signal of one chip is compared with that of the other adjacent chip. If these signals are not identical to each other, the foreign matter is determined to exist on the specimen in detection.
Abstract:
A signal speed converting apparatus to be connected to a WDM transmission end office, comprising a first interface connected to a first optical line group, a plurality of second interfaces connected to a second optical line group, and a speed converter. The first interface has a first framer for terminating a frame in a first format received from the first optical line group and outputting an information signal extracted from the received frames as a serial signal train or parallel signal trains. The speed converter converts the output signal from the first framer into transmission signal trains each including interleaved communication frame by cyclically distributing the output signal from the first framer to a plurality of internal lines. Each of the second interfaces has a second framer for converting the communication frame received from one of the internal lines into information frame in a second format to be transmitted to the second optical line group. Management information inserting units are located between the first and second interfaces in order to insert management information to be communicated with an opposite apparatus into the transmission signal trains on the internal lines.
Abstract:
A connecting arrangement of a lever is rotatably connected to a wiper arm. Arms of the lever are located on longitudinal sides, respectively, of the connecting arrangement and extend in the longitudinal direction of a wiper strip. Each arm of the lever includes a holding portion, which is provided in a longitudinal distal end of the arm to hold the wiper strip together with backing plates. The holding portion of each arm of the lever is positioned in an intermediate location between the connecting arrangement and a corresponding longitudinal end of the wiper strip.
Abstract:
When using a CCD sensor as a photo-detector in a device for inspecting foreign matters and defects, it has a problem of causing electric noise while converting the signal charge, produced inside by photoelectric conversion, into voltage and reading it. Therefore, the weak detected signal obtained by detecting reflected and scattered light from small foreign matters and defects is buried in the electric noise, which has been an obstacle in detecting small foreign matters and defects. In order to solve the above problem, according to the present invention, an electron multiplying CCD sensor is used as a photo-detector. The electron multiplying CCD sensor is capable of enlarging signals brought about by inputted light relatively to the electric noise by multiplying the electrons produced through photoelectric conversion and reading them. Accordingly, compared to a conventional CCD sensor, it can detect weaker light and, therefore, smaller foreign matters and defects.