Abstract:
An anti-glare film, a method for manufacturing the anti-glare film, and a display device provided with the anti-glare film are provided. The anti-glare film includes fine irregularities formed on a surface of the anti-glare film, and wherein arithmetic mean roughness Ra of a roughness curve of the surface is 0.05 to 0.5 micrometers, and root mean square slope RΔq is 0.003 to 0.05 micrometers.
Abstract:
A tampon applicator includes an outer tube having a large-diameter section for storing a tampon; and a small-diameter section which is smaller in diameter than the larger-diameter section and is positioned at a base portion side that is wider than the large-diameter section; and a push-out member which is inserted slidably into an opening portion at a rear end of the outer tube and is capable of compressing from the rear the tampon that is stored in the large-diameter section and then pushing out the compressed tampon from an opening portion at a front end of the outer tube, wherein at least one opening is provided on an exterior face of the large-diameter section.
Abstract:
Digital image acquisition device such as CCD/CMOS sensors often introduces random temporal noise into digital video sequences. Temporal noise generally carries high frequency components in both the spatial and temporal domains and is also random in nature. Because of these properties, they are generally very expensive to encode and would substantially degrade coding efficiency. It is therefore important to eliminate or suppress such temporal noise in video inputs prior to encoding. The present invention provides a methodology to achieve such a goal in a highly cost-effective manner where coding performance, latency, computational cost, and memory requirements are optimized. This methodology can be efficiently implemented as part of digital video compression algorithm and scales nicely for various bitrates.
Abstract:
Process for producing photoresist polymeric compound having repeated units corresponding to at least one monomer selected from monomer (a) having lactone skeleton, monomer (b) having group which becomes soluble in alkali by elimination with acid, and monomer (c) having alicyclic skeleton having hydroxyl group. Process includes (A) polymerizing mixture of monomers containing at least one monomer selected from the above monomers (a), (b), and (c), and (B) extracting polymer formed in the polymerization by using organic solvent and water to partition the formed polymer into organic solvent layer and metal component impurity into aqueous layer, or passing polymer solution, which contains polymer having repeated units corresponding to at least one of the above monomers (a), (b), and (c) and metal content of which is 1000 ppb by weight or less relative to the polymer through filter comprising porous polyolefin membrane having cation-exchange group. The photoresist polymeric compounds have a metallic impurity content that is extremely low.
Abstract:
A method for producing an anti-glare film includes applying a coating composition including at least a resin, a solvent, and fine particles to a substrate; drying the coating composition applied to the substrate so that a Benard cell structure is formed in the surface of the coating layer due to convection caused during volatilization of the solvent; and curing the resin contained in the coating composition having formed therein a Benard cell structure to form an anti-glare layer having fine irregularities with a moderate surface waviness. The anti-glare layer has a degree of white muddiness of 1.7 or less, as measured by quantitatively determining a diffuse reflection component of the diffused light incident upon the surface of the anti-glare layer.
Abstract:
An apparatus for supporting verification includes a detecting unit that detects description data of a false path from setting data for a system mode operation of a target circuit to be verified; an analyzing unit that analyzes the description data in the system mode operation and a test mode operation of the target circuit; a diversion determining unit that determines, based on a result of analysis by the analyzing unit, whether the description data is divertible to the test mode operation; and a generating unit that generates setting data for the test mode operation based on a result of determination by the determining unit.
Abstract:
Process for producing photoresist polymeric compound having repeated units corresponding to at least one monomer selected from monomer (a) having lactone skeleton, monomer (b) having group which becomes soluble in alkali by elimination with acid, and monomer (c) having alicyclic skeleton having hydroxyl group. Process includes (A) polymerizing mixture of monomers containing at least one monomer selected from the above monomers (a), (b), and (c), and (B) extracting polymer formed in the polymerization by using organic solvent and water to partition the formed polymer into organic solvent layer and metal component impurity into aqueous layer, or passing polymer solution, which contains polymer having repeated units corresponding to at least one of the above monomers (a), (b), and (c) and metal content of which is 1000 ppb by weight or less relative to the polymer through filter comprising porous polyolefin membrane having cation-exchange group. The photoresist polymeric compounds have a metallic impurity content that is extremely low.
Abstract:
Process for producing photoresist polymeric compound having repeated units corresponding to at least one monomer selected from monomer (a) having lactone skeleton, monomer (b) having group which becomes soluble in alkali by elimination with acid, and monomer (c) having alicyclic skeleton having hydroxyl group. Process includes (A) polymerizing mixture of monomers containing at least one monomer selected from the above monomers (a), (b), and (c), and (B) extracting polymer formed in the polymerization by using organic solvent and water to partition the formed polymer into organic solvent layer and metal component impurity into aqueous layer, or passing polymer solution, which contains polymer having repeated units corresponding to at least one of the above monomers (a), (b), and (c) and metal content of which is 1000 ppb by weight or less relative to the polymer through filter comprising porous polyolefin membrane having cation-exchange group. The photoresist polymeric compounds have a metallic impurity content that is extremely low.
Abstract:
An anti-glare film has a plurality of diffuser elements, and has specified optical properties. The ratio of I(α+1)/I(α) is more than 0.1 to 0.6, where I(α) is an intensity of a light reflected toward an arbitrary angle α of 10° or less from a specular reflection direction of an incident light upon the surface at an angle of 5° to 30° from the surface normal, and I(α+1) is an intensity of a reflected light deviated from the arbitrary angle α by 1° in a wide-angle direction. The gain of a light reflected in the direction at 20° or more from the specular reflection direction of the incident light is 0.02 or less, in which the gain is obtained by normalizing a reflected light intensity using a specular reflection intensity of a standard diffuse plate as 1. The diffuser elements have an average space therebetween of 50 to 300 micrometers.
Abstract:
The present invention provides for a vehicle, such as a motorcycle, that is capable of sufficiently absorbing shock applied in the vehicle width direction due to uneven terrain, such as bumps and potholes, on the ground or road during turns. The vehicle, such as the motorcycle, includes a head pipe for supporting a front wheel, a main frame for supporting a rear wheel to which the head pipe is attached for rotation about a torsion axis of a shaft part extending longitudinally, and a torsion spring for absorbing shock as the head pipe rotates with respect to the main frame.