Abstract:
Methods and apparatus are provided for receiving a first signal and generating an output signal indicative of radio data system (“RDS”) information. A receiver circuit of the invention can include mixer circuitry, lowpass filter circuitry, downsampler circuitry, and decoder circuitry. Advantageously, the receiver circuit can operate entirely within the digital domain, promoting interoperability with digital frequency modulation (“FM”) demodulator circuitry.
Abstract:
A system for performing maximum ratio combining on a plurality of symbols corresponding to a transmitted symbol. A plurality of antennas is configured to receive, via respective communication channels, respective ones of the plurality of symbols. An automatic gain control is configured to modify each of the plurality of symbols using a respective gain. The respective gains are different for each of the plurality of symbols. A channel estimator is configured to generate, for each of the respective communication channels, a channel estimate in accordance with a respective one of the plurality of symbols as modified using the respective gain. A demodulator is configured to generate, in accordance with the channel estimates and the plurality of symbols as modified using the respective gains, a maximum ratio combining output and demodulate the maximum ratio combining output to generate a demodulated plurality of symbols.
Abstract:
In accordance with an embodiment, there is provided a method comprising receiving, at a receiver, a desired signal and an interfering signal, wherein the interfering signal was transmitted with a modulation unknown to the receiver; identifying a likely modulation corresponding to the modulation with which the interfering signal was transmitted; and decoding the desired signal using a modulation dependent multiple-input multiple output (MIMO) detection, wherein the modulation dependent MIMO detection is based at least in part on the identified likely modulation corresponding to the modulation with which the interfering signal was transmitted, wherein the modulation dependent MIMO detection includes maximum likelihood (ML) detection.
Abstract:
A physical layer device including a mapping module to map a plurality of data streams to a plurality of transmit antennas. Each transmit antenna is associated with a respective radio frequency channel. A first gain module communicates with a first transmit antenna, receives a first plurality of signals generated based on the plurality of data streams, and applies a first complex gain corresponding to the first transmit antenna to each of the first plurality of signals. A second gain module communicates with a second transmit antenna, receives a second plurality of signals generated based on the plurality of data streams, and applies a second complex gain corresponding to the second transmit antenna to each of the second plurality of signals. The second plurality of signals is different than the first plurality of signals. The second complex gain is different than the first complex gain.
Abstract:
A system including a first receiver to receive a first signal including a first set of codewords and to generate a first set of decoded codewords by decoding one or more codewords of the first set of codewords. A first interference canceller measures first reliability metrics of codewords corresponding to the first set of decoded codewords and selects a second set of decoded codewords from the first set of decoded codewords based on the first reliability metrics. An encoder generates an encoded signal by encoding the second set of decoded codewords. A modulator generates a second signal by modulating the encoded signal. A subtractor subtracts a portion of the second signal from the first signal to cancel interference of first codewords corresponding to the second set of decoded codewords on codewords other than the first codewords in the first set of codewords in the first signal.
Abstract:
In a wireless communication system including a plurality of client stations including at least one client station that is not configured to utilize carrier aggregation, different coverage areas correspond to different frequency bands being utilized. Wireless medium resources are allocated and frequency band(s) are assigned, jointly, to the client stations based on one or more coverage areas corresponding to one or more frequency bands in which each client station is located, whether client stations are configured to utilize carrier aggregation, demand factors, and indications of channel quality.
Abstract:
A system including an input module, a first gain module, a second gain module, and a preamble estimation module. The input module is configured to receive an input signal from a station. The input signal includes (i) a first preamble sequence, and (ii) subcarriers. The first gain module is configured to, based on the input signal, generate first channel gain values. Each of the first channel gain values is for a respective one of the subcarriers. A second gain module is configured to, based on the first channel gain values, generate second channel gain values. A preamble estimation module is configured to estimate the first preamble sequence based on (i) the first channel gain values, and (ii) the second channel gain values.
Abstract:
One or more communications parameters associated with a multiple input, multiple output (MIMO) signal transmitted by a transmitter are identified. The one or more communications parameters include one or more of (i) a number of receive antennas via which the MIMO signal is received, (ii) a number of spatial streams in the MIMO signal, and (iii) a signal to noise ratio (SNR) corresponding to the MIMO signal. A particular data detection technique of a plurality of data detection techniques employed by a receiver is selected in accordance with at least one of the one or more communications parameters.
Abstract:
In a method of demodulating a signal transmitted via a multiple input multiple output (MIMO) communication channel, a data symbol vector is received, the data symbol vector including a plurality of data symbols that are received via a plurality of antennas. The received data symbol vector corresponds to a transmitted data symbol vector including a plurality of transmitted data symbols. A plurality of candidate vectors are generated for the transmitted data symbol vector, the plurality of candidate vectors being less than all possible vectors for the transmitted data symbol vector. One candidate vector is selected from the plurality of candidate vectors such that the one candidate vector minimizes a distance value corresponding to a Euclidean distance between the received data symbol vector and a channel estimate matrix multiplied with the candidate vector.
Abstract:
Methods and apparatus are provided for receiving a first signal and generating an output signal indicative of radio data system (“RDS”) information. A receiver circuit of the invention can include mixer circuitry, lowpass filter circuitry, downsampler circuitry, and decoder circuitry. Advantageously, the receiver circuit can operate entirely within the digital domain, promoting interoperability with digital frequency modulation (“FM”) demodulator circuitry.