Abstract:
A system for controlling a temperature of a downhole component is disclosed. The system includes: a cooling material in thermal communication with the downhole component; and a container configured to house the cooling material therein, the cooling material configured to undergo an endothermic reaction and decompose at a selected temperature and absorb heat from the downhole component.
Abstract:
A method is disclosed, including but not limited to positioning a tool containing an injection liquid in a well bore formed in a formation; injecting the injection liquid through a probe into the formation; and withdrawing formation fluid from the formation through the probe. A system is disclosed for performing functions useful in positioning a tool containing an injection liquid in a well bore formed in a formation; injecting the injection liquid through a probe into the formation; and withdrawing formation fluid from the formation through the probe.
Abstract:
An apparatus for estimating a volume fraction of a formation fluid in a sample having a filtrate contaminant includes: a carrier configured to be conveyed through a borehole; a downhole fluid extraction device disposed at the carrier and configured to extract a sample of a formation fluid through a wall of the borehole; and a dielectric spectrometer and configured to transmit electromagnetic energy into the extracted sample at a plurality of frequencies and to measure a plurality of responses to determine a permittivity of the extracted sample fluid as a function of frequency. The apparatus further includes a processor configured to receive the permittivity of the extracted sample as a function of frequency from the dielectric spectrometer and to estimate the volume fraction of the formation fluid using a permittivity at a selected frequency in the plurality of frequencies for the sample as measured by the dielectric spectrometer.
Abstract:
A device for sampling fluid from an earth formation is disclosed. The device includes: an inlet port disposable in fluid communication with the fluid in a borehole; an injector including an injection chamber in fluid communication with the inlet port, the injector configured to receive a portion of the fluid and direct the fluid toward an analysis unit for analyzing constituent materials in the fluid; and a high pressure valve configured to admit the portion of the fluid at a borehole pressure and release the portion of the fluid into the injector, the portion having a volume that is less than or equal to about one microliter. A system and method for analyzing constituents of fluid in a borehole in an earth formation is also disclosed.
Abstract:
A system, apparatus and method for determining an acoustic property of a fluid in a wellbore is disclosed. A faceplate is placed in the wellbore with a stepped surface of the faceplate in contact with the fluid. The stepped surface includes a non-stepped face and a stepped face. A first portion of an acoustic pulse passes from the faceplate into the fluid via the non-stepped face and a second portion of the acoustic pulse passes from the faceplate into the fluid via the stepped face. A first reflected acoustic pulse related to the first portion of the acoustic pulse is received. A second reflected acoustic pulse related to the second portion of the acoustic pulse is received. A measurement of the first reflected acoustic pulse and a measurement of the second reflected pulse are used to determine the acoustic property of the fluid in the wellbore.
Abstract:
In one aspect a method of determining direction east is provided that in one embodiment includes dropping objects under influence of gravity, determining locations where the objects drop, and determining the direction east from the locations where the objects drop.
Abstract:
An apparatus, system and method are disclosed for estimating a property of a fluid downhole, the apparatus including but not limited to a carrier that is conveyable in a borehole; a test cell carried by the carrier for capturing a fluid downhole; a fluid channel immersed in the fluid downhole, the fluid channel having a first wall and a second wall, wherein the first wall faces the second wall; at least on charged particle source placed at location along the first wall of the fluid channel; and at least one charged particle detector placed at a location along the second wall of the fluid channel, wherein the at least one radioactive detector is in positioned to be in particle communication with the at least one of the charged particle source.
Abstract:
An apparatus for estimating gravitational acceleration includes: a chamber having a longitudinal axis and configured to contain a first gas; a first cavity ring-down spectrometer configured to measure a density of the first gas at a first location along the longitudinal axis using a first optical cavity having a first optical axis and configured to resonate light rays that are absorbed by the first gas in the first optical cavity, wherein the first optical axis has at least a vector component perpendicular to the longitudinal axis; and a processor configured to receive a first density measurement from the first cavity ring-down spectrometer and to estimate the gravitational acceleration using the first density measurement.
Abstract:
Downhole tools for use in wellbores in subterranean formations comprise a body comprising at least one anomalous strengthening material. Methods of forming downhole tools for use in wellbores in subterranean formations comprise forming a body comprising at least one anomalous strengthening material. Methods of using downhole tools in wellbores in subterranean formations comprise disposing a body comprising at least one anomalous strengthening material in a wellbore in a subterranean formation. The at least one anomalous strengthening material may be exposed to a temperature within the wellbore higher than a temperature at a surface of the subterranean formation and a yield strength of the at least one anomalous strengthening material may increase.
Abstract:
An apparatus, method and compute-readable medium for detecting a gas influx event in a borehole fluid during a drilling operation is disclosed. A measurement of an acoustic velocity of the borehole fluid is obtained at an acoustic sensor disposed in a borehole. A measurement of temperature of the borehole fluid is obtained at a temperature sensor disposed in the borehole. A process compares the measurement of the acoustic velocity of the borehole fluid to the measurement of the temperature of the borehole fluid to detect the gas influx event.