Abstract:
Devices and methods are provided for facilitating handing over to a hybrid femto access point that implements multiple radio access technologies (RATs), including a first RAT and a second RAT. In one embodiment, the method involves detecting a pilot from the hybrid femto access point, wherein the pilot is associated with the first RAT. The method involves registering with the hybrid femto access point on a first channel associated with the first RAT based upon the detected pilot. A system selection database is analyzed to identify a second channel associated with the second RAT, and a selection to handover to the identified second channel is effectuated.
Abstract:
Systems, apparatus and methods for facilitating identification and/or acquisition of an access point are provided. Methods can include transmitting or receiving access point information (“API”) indicative of an identification of the access point (“AP”). The API can be provided at the AP through hardwiring or receipt of configuration information input by a user or transmitted to the AP by a network operator through Over-The-Air (“OTA”) signaling. The API can be computer-readable and, in some embodiments, the API can also be human-readable. The API can be transmitted on a paging channel from which user equipment (“UE”) can receive information. The frequency at which the API is transmitted can be fixed, dynamic and/or configurable. Upon receipt of the API, acquisition of the AP is attempted if the AP is determined to be a permitted AP.
Abstract:
Systems and methodologies are described herein that facilitate efficient transfer of quality of service (QoS) context during inter-radio access technology (RAT) handovers. In particular, techniques are described herein for establishing rules for whether a user equipment unit (UE) or an associated network should establish QoS for a mixed-mode application, identifying flow to bearer mappings when translating QoS across an inter-RAT handover, mapping QoS parameters of respective RATs, mitigating QoS depreciation upon multiple handovers, performing one or more actions if QoS is not acceptable in a new RAT, maintaining QoS during tunnel mode, and handling scenarios in which a UE moves between a RAT using network-initiated QoS and a RAT using UE-initiated QoS.
Abstract:
Methods and apparatuses are provided that pausing transmission control protocol (TCP) transmissions during or following handover to prevent unwarranted duplicated acknowledgement transmission, which can cause decrease in TCP window size. During handover, transmission on-hold commands can be sent to a TCP layer that indicate to prepare to pause TCP transmissions, immediately pause TCP transmissions, and/or the like. Transmission resume commands can be sent to the TCP layer following handover. In addition, TCP transmissions can be paused following handover to allow data forwarding data to be provisioned to a device from a target base station without duplicated acknowledgement transmission.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus monitors a page during a current paging cycle on a first frequency. In addition, the apparatus switches to a second frequency after the current paging cycle to receive multicast/broadcast information on the second frequency. Furthermore, the apparatus attempts to receive the multicast/broadcast information on the second frequency before a predetermined time.
Abstract:
A mobile communication network includes a plurality of access nodes that can serve different roles in support of a communication session with a mobile station. An access node can serve as a connecting node that receives access requests the mobile station, as an anchor node to anchor a radio packet connection with a core network for the communication session; or as a primary node to store session information for the communication session. When the communication session is established, the anchor node for the communication session may select another access node to serve as the primary node. Session information can be stored at both the anchor node and primary node so that data can be delivered to the mobile station if either one of the anchor node and primary node are available.
Abstract:
An apparatus and method for increasing efficiency of data packet transmission comprising receiving a TCA message and a new pilot signal; determining if the TCA message includes at least one scheduler tag; performing one of the following: determining if there are other pilot signals associated with the at least one scheduler tag or determining if the new pilot signal is in a softer handoff with a member of an active set; and performing one of the following: associating the new pilot signal to the at least one scheduler tag or creating a new scheduler group and associating the new pilot signal with it. In one aspect, one of the following additional steps is performed: determining if all the other pilot signals are newly added to the at least one scheduler tag or determining if at least one of the other pilot signals is associated with the active set.
Abstract:
Systems and methodologies are described herein that facilitate efficient transfer of quality of service (QoS) context during inter-radio access technology (RAT) handovers. In particular, techniques are described herein for establishing rules for whether a user equipment unit (UE) or an associated network should establish QoS for a mixed-mode application, identifying flow to bearer mappings when translating QoS across an inter-RAT handover, mapping QoS parameters of respective RATs, mitigating QoS depreciation upon multiple handovers, performing one or more actions if QoS is not acceptable in a new RAT, maintaining QoS during tunnel mode, and handling scenarios in which a UE moves between a RAT using network-initiated QoS and a RAT using UE-initiated QoS.
Abstract:
Methods and apparatus for network pre-configuration of Quality of Service (QoS) parameters in a communication channel triggered by establishment of packet data access by an access terminal with the network. The network-determined and network-initiated pre-establishment of the QoS parameters are for one or more reservation links, which each relate to a corresponding one or more applications resident on the access terminal.
Abstract:
A mobile device or access terminal of a wireless wide area network (WWAN) communication system is provisioned for Multi-Mode System Selection (MMSS) wherein an MMSS System Priority List (MSPL) is used with respect to the underlying system selection priority list (e.g., Private Land Mobile Network (PLMN) list). Relating a current location to one or more entries in an MMSS Location Associated Priority List (MLPLs) enables scaling a range of entries in the PLMN list, indicating whether the MSPL apply to the entire list of PLMNs stored in an access terminal or to some subset of the PLMN List. Similarly, the present innovation addresses whether the MSPL applies to the entire Preferred Roaming List (PRL) or some subset of a geo-spatial location (GEO) area.