Abstract:
A bioptical laser scanning system employing a plurality of laser scanning stations about a two independently controlled rotating polygonal mirrors. The system has an ultra -compact construction, ideally suited for space-constrained retail scanning environments, and generates a 3-D omnidirectional laser scanning pattern between the bottom and side-scanning windows during system operation. The laser scanning pattern of the present invention comprises a complex of quasi-orthogonal laser scanning planes, including a plurality of substantially-vertical laser scanning planes for reading bar code symbols having bar code elements (i.e. ladder type bar code symbols) that are oriented substantially horizontal with respect to the bottom-scanning window, and a plurality of substantially-horizontal laser scanning planes for reading bar code symbols having bar code elements (i.e. picket-fence type bar code symbols) that are oriented substantially vertical with respect to the bottom-scanning window.
Abstract:
A digital image capturing and processing system for automatically recognizing objects in a POS environment. The system includes a system housing having an imaging window; illumination and imaging stations for generating and projecting illumination and imaging planes or zones through the imaging window, and into a 3D imaging volume definable relative to the imaging window, for digital imaging an object passing through the 3D imaging volume, and generating digital linear images of the object as the object intersects the illumination and imaging planes or zones during system operation. A digital image processor processes the digital images and automatically recognizes the object, such as produce and fruit, graphically represented by the digital images.
Abstract:
A coplanar laser illumination and imaging subsystem deployable in an image capturing and processing system, and including an image formation and detection (IFD) subsystem having an image sensing array and optics providing a field of view (FOV) on the image sensing array, and forming an image of an object within the FOV and detecting said image on the image sensing array and producing a digital image thereof. The system includes a spectral-mixing based illumination subsystem having an array of VLDs for producing a visible illumination beam, and an array of IR laser diodes (LDs) for producing an invisible illumination beam. The visible and invisible illumination beams spatially overlaps and spatially/temporally intermixes with each other to produce a composite spectrally-mixed illumination beam having a relative power ratio (VIS/IR), and is substantially coplanar with the FOV of said image sensing array. A laser despeckling mechanism is provided for reducing the coherence of the composite spectrally-mixed illumination beam, and/or its components, so that the digital images produced by the IFD subsystem having substantially reduced levels of speckle-pattern noise when the laser despeckling mechanism is operational.
Abstract:
A bioptical laser scanning system at a point of sale (POS) station, that generates and projects a first plurality of laser scanning planes through a horizontal-scanning window, and a second plurality of laser scanning planes through a vertical-scanning window. The first and second pluralities of laser scanning planes intersect within predetermined scan regions contained within a 3-D scanning volume defined between the horizontal-scanning and vertical-scanning windows, and generate a plurality of groups of intersecting laser scanning planes within the 3-D scanning volume. The plurality of groups of intersecting laser scanning planes form a complex omni-directional 3-D laser scanning pattern within the 3-D scanning volume capable of scanning a bar code symbol located on the surface of any object, including a six-sided rectangular box-shaped object, presented within the 3-D scanning volume at any orientation and from any direction at the POS station so as to provide six-sided 360-degree omni-directional bar code symbol scanning coverage at said POS station.
Abstract:
An automatic automatically-triggered digital video-imaging based code symbol reading system for use in point of sale (POS) environments, employing an adaptive control process involving the real-time analysis of the exposure quality of captured frames of digital image data and the real-time reconfiguration of system control parameters (SCPs) based on the results of such exposure quality analysis. By virtue of the present invention, the system enables the reliable reading of code symbols graphically represented in digital images, under demanding point-of-sale lighting conditions and other challenging environments.
Abstract:
A method of generating a complex laser scanning pattern from a bioptical laser scanning system for providing 360° of omnidirectional bar code symbol scanning coverage at a point of sale station that employs a plurality of laser scanning stations about a two independently controlled rotating polygonal mirrors. The system has an ultra-compact construction, ideally suited for space-constrained retail scanning environments, and generates a 3-D omnidirectional laser scanning pattern between the bottom and side-scanning windows during system operation. The laser scanning pattern of the present invention comprises a complex of laser scanning planes, including a plurality of substantially-vertical laser scanning planes for reading bar code symbols having bar code elements (i.e. ladder type bar code symbols) that are oriented substantially horizontal with respect to the bottom-scanning window, and a plurality of substantially-horizontal laser scanning planes for reading bar code symbols having bar code elements (i.e. picket-fence type bar code symbols) that are oriented substantially vertical with respect to the bottom-scanning window.
Abstract:
An automatic digital image capturing and processing system for use in point of sale (POS) environments. The system comprising a system housing having an imaging window, a plurality of coextensive area-type illumination and imaging stations disposed in the system housing, for projecting a plurality of coextensive area-type illumination and imaging zones through the imaging window and into the 3D imaging volume, for capturing a series of area-type digital images of an object intersecting therewith during system operation. An object motion detection subsystem automatically detects the motion of objects passing through the 3D imaging volume, and generates velocity data in response to the detection of the objects moving through the 3D imaging volume during system operation, while a control subsystem, responsive to the velocity data, generates control data for controlling at least one exposure control parameter associated with the operation of the area-type imaging arrays within the coextensive area-type illumination and imaging stations, and also controlling and/or coordinating other operations of the subsystems during system operation.
Abstract:
An automatic digital image capturing and processing system for use in a POS environment, comprising a system housing having horizonal housing section, installable in a countertop surface at the POS environment, and supporting an area-type illumination and imaging station for generating and projecting an area-type illumination and imaging zone into a 3D imaging volume definable relative to the system housing. An object motion detection subsystem automatically detects the motion of objects passing through the 3D imaging volume, and generates motion data representative of detected object motion within the 3D imaging volume. And a control subsystem, responsive to the object motion detection subsystem, automatically controls operations within the area-type illumination and imaging station during system operation. The area-type illumination and imaging zone supports automated illumination and imaging of objects passing therethrough, so that digital area-type images of the objects are automatically generated as objects pass through the area-type illumination and imaging zone within the 3D imaging volume during system operation.
Abstract:
A digital image capture and processing system for automatically recognizing objects at a point of sale (POS) station. The system comprising a system housing having an imaging window, and containing a digital image capturing and processing engine including a plurality of coplanar illumination and imaging stations. The stations generate and project a complex of coplanar illumination and imaging planes through the imaging window, and within a 3D imaging volume definable relative to the imaging window for omni-directional imaging of objects passing through the 3D imaging volume, and generate digital linear images of the object as the object intersects coplanar illumination and imaging planes within the 3D imaging volume during system operation. A database is provided for storing one or more object libraries representing objects that can be recognized by the system. A digital image processing subsystem automatically (i) processes digital images generated by said coplanar illumination and imaging stations, (ii) extracts object features from processed digital images, and (iii) recognizes objects which are represented by the object libraries and producing information representative of recognized objects for display at the POS station.
Abstract:
A method for intelligently controlling the illumination and imaging of objects while being moved through a 3D imaging volume of a digital image capturing and processing system projecting a plurality of field of views (FOVs) through said 3D imaging volume during system operation. As an object is being moved within the 3D imaging volume, and prior to illumination and imaging, an initial position is determined for the object specifying the beginning of a projected trajectory which the object is likely to follow as the object is moved through the 3D imaging volume. The initial position is used to determine a projected trajectory of the object through the 3D imaging volume. The FOVs which intersect with the projected trajectory of the object, passing through said 3D imaging volume, are determined. Only the determined FOVs are selectively illuminated as the object is moved along its projected trajectory through the FOVs, while digital linear images of the object are formed and detected, for storage and subsequent processing of information graphically represented in the digital linear images.