Abstract:
Systems and methods are disclosed which provide wireless communication systems implementing subsystems adapted for flexible deployment configurations and to resist the introduction of interference. Preferred embodiments of the present invention provide a wireless communication system configuration in which an ODU subsystem is coupled to an IDU subsystem using a fiber optic link. According to a preferred embodiment of the present invention, an ODU subsystem is adapted to provide conversion between digital and analog to thereby facilitate the use of a digital link between the ODU subsystem and a corresponding IDU subsystem. Embodiments of the present invention utilize a plurality of ODU subsystems configured according to the present invention to provide wireless communication coverage of a service area, such as to provide a wireless application termination system (WATS) hub for use in providing wireless communication links with respect to a plurality of subscriber units.
Abstract:
Embodiments of the invention provide several antenna designs that exhibit both high bandwidth and efficiency, such as for operation in one or more bands, such as but not limited to operation in 3G, 4G, LTE bands. A first aspect of the invention concerns the form factor of the enhanced antenna; a second aspect of the invention concerns the ease with which the enhanced antenna is manufactured; and a third aspect concerns the superior performance exhibited by the enhanced antenna across one or more bandwidths.
Abstract:
The present technology provides an improved antenna having a conductive first plate, a conductive second plate and a conductive third plate. The conductive first plate and the conductive second plate are disposed and have an electrical connection to form an external antenna structure having a U-shaped cross section. The conductive third plate is disposed parallel to the conductive first plate between the conductive first plate and the conductive second plate and has a proximate edge proximate the electrical connection. The conductive third plate has an electrical length with respect to the proximate edge corresponding to an odd integer multiple of a quarter of a guide wavelength associated with a resonant frequency of the antenna. The conductive third plate forms part of an internal antenna structure.
Abstract:
The invention provides an apparatus and a corresponding method for controlling radiation characteristics of a transmitter of a wireless device. The wireless device includes a transmitting portion that includes one or more antennas that are characterized by one or more radiation patterns. The wireless device further comprises a sensor system for determining an orientation of the transmitting portion and a control system that is operatively coupled to the sensor system and configured to control the supply of power to each antenna depending on the orientation of the transmitting portion.
Abstract:
Network device includes a plate, an OTST plate, and a light source. First plate is situated at a first side of the network device wherein the first side can be the front side of device. OTST plate is situated at a second side of the network device and positioned substantially perpendicular to the plate, wherein the OTST plate having a first surface and a second surface further includes status indicators showing performance status associated with the network device. The light source, in one embodiment, can be an LED device capable of projecting a light beam with a predefined angle onto the first surface of OTST plate illuminating one or more status indicators. At least one status indicator is viewable from the second surface or bottom surface of OTST second plate when at least a portion of OTST plate is illuminated.
Abstract:
A network device and method for improving performance monitoring capabilities using wide view angle indicators are disclosed. The network device or system, in one embodiment, includes a first plate, a second plate, and a first light source. The first plate includes an edge lip or lip containing a graphic viewing surface. Various ultraviolet (“UV”) inked icons indicating functional performance are inscribed in or on the graphic viewing surface. The second plate is situated substantially perpendicular to the first plate, wherein an edge of the second plate is positioned adjacent to the graphic viewing surface. The first light source is configured to selectively project a UV light onto at least a portion of the graphic viewing surface to active at least one UV inked icon.
Abstract:
Network device includes a plate, an OTST plate, and a light source. First plate is situated at a first side of the network device wherein the first side can be the front side of device. OTST plate is situated at a second side of the network device and positioned substantially perpendicular to the plate, wherein the OTST plate having a first surface and a second surface further includes status indicators showing performance status associated with the network device. The light source, in one embodiment, can be an LED device capable of projecting a light beam with a predefined angle onto the first surface of OTST plate illuminating one or more status indicators. At least one status indicator is viewable from the second surface or bottom surface of OTST second plate when at least a portion of OTST plate is illuminated.
Abstract:
A network device and method for improving performance monitoring capabilities using wide view angle indicators are disclosed. A network device, in one embodiment, includes a first plate, a second plate, and a light source. The first plate has multiple performance indicators situated at a side of the network device. The second plate has multiple performance indicators wherein the second plate is situated at a surface having a predefined angle with respect to the first plate. The light source, which includes at least one light emitting diode (“LED”) and optical element(s), is capable of generating two illuminating beams. The first illuminating beam illuminates a portion of device performance viewable from the first plate and the second illuminating beam illuminates a first portion of device performance viewable from the second plate.
Abstract:
The present invention provides a system and method for facilitating and monitoring provisioning of wireless communication devices. Wireless devices are provided to an end user in an unconfigured state, capable of being configured for operation using one or more communication protocols. Upon receipt and validation of a provisioning request by the wireless device, for example by a server, the wireless device is securely provisioned for operation with a wireless service provider. Provisioning activities are monitored and information is generated in response to provisioning events, for example via a database. Portions of the information are made available to one or more wireless service providers or parties providing enabling technology of the wireless device. Such reports may be used to facilitate revenue agreements between various parties involved in providing and servicing the wireless device.
Abstract:
A network device and method for improving performance monitoring capabilities using wide view angle indicators are disclosed. A network device, in one embodiment, includes a first plate, a second plate, and a light source. The first plate has multiple performance indicators situated at a side of the network device. The second plate has multiple performance indicators wherein the second plate is situated at a surface having a predefined angle with respect to the first plate. The light source, which includes at least one light emitting diode (“LED”) and optical element(s), is capable of generating two illuminating beams. The first illuminating beam illuminates a portion of device performance viewable from the first plate and the second illuminating beam illuminates a first portion of device performance viewable from the second plate.