Abstract:
In order to separate rod-shaped bodies from a bundle of bodies, the surface of an uppermost body in the bundle is determined in a separation apparatus by a sensor, which body is then seized laterally of the sensor by a first gripper and is vertically lifted, whereupon a further gripper engages under said body, laterally of the first gripper unit. The further gripper is then moved to the other end region of the body, with the body being lifted out of the bundle. Next, said body is moved to a deposition location by both grippers.
Abstract:
The invention relates to a separating mechanism (12) for conveying and separating elongate parts (2) from a part quantity in a conveying direction extending transversely to their longitudinal extension, comprising a pick-up region (41) and a discharge region (51) for elongate parts (2) separated from the part quantity disposed above it, with at least one endlessly circulating, driveable conveyor element (47) extending between the pick-up region (41) and the discharge region (51), which has driver elements (46) disposed one after the other in the conveying direction (9) and extending parallel with one another transversely to the conveying direction (9). Every driver element (46) has on its external face directed towards the pick-up region (41) a recessed groove with an approximately trapezoidal cross-section extending in its longitudinal direction and open in the direction towards the pick-up region (41) for accommodating elongate parts (2) as and when necessary. A length of the recessed groove corresponds to at least twice the maximum length of the elongate part (2). The invention further relates to a system for conveying and separating elongate parts with an inlet conveyor system, a separating mechanism (12) and a discharge unit (13).
Abstract:
A method and machine separates profiled elements from a plurality of profiled elements. The machine includes a structure having opposed first and second ends and opposed sides, the structure receiving profiled elements extending between the first and second ends. A first separating device more evenly distributes the profiled elements between the sides. A displacement member displaces a portion of the profiled elements away from the remainder of the profiled elements. A gripper receives the portion of the separated profiled elements, the gripper moving the separated profiled elements toward one of the sides. A second separating device disposed adjacent the first end between the portion of the separated profiled elements and the remainder of the profiled elements travels from the first end toward the second end for separating the separated profiled elements from the remainder of the profiled elements, directing the separated profiled element to one side of the structure.
Abstract:
A high-speed stacker preferably includes dual stacking arms configured to operate complementary to one another. Most preferably, an electronic control system is provided to enable precise control over the speed and positioning of the stacker arms in both horizontal and vertical orientations. Linear motion devices (such as hydraulic cylinders, screw drive linear actuators, or other devices) can be used to position the arms horizontally and vertically in response to instructions from the electronic control system. In operation, the electronic control system preferably controls the speed and ramping of the stacker arms to repeatedly move courses of material from a feed system to a stacking area at a rapid rate with little maintenance. The high-speed stacker can also be configured to operate fewer than all of the stacker arms to facilitate faster stacking of smaller courses of material.
Abstract:
An apparatus for picking lumber pieces from the ground for example for removing support lumber used during laying of a pipe line comprises a tracked vehicle to which is attached a frame carrying a transport conveyer along the side of the vehicle inclined forwardly and downwardly toward the ground. A picking assembly is provided at the front of the conveyor and alongside the vehicle for lifting the pieces. This includes a front picking roller and a movable outer side blade which is inclined outwardly to the outer side of the picking roller and can be pivoted inwardly to close around the front of the picking roller to squeeze the lumber pieces to force them onto the conveyor.
Abstract:
An apparatus for picking, conveying, stacking and bundling lumber pieces from the ground for example for removing stacked support lumber during laying of a pipe line comprises a tracked vehicle to which is attached a frame carrying a transport conveyer along the side of the vehicle forwardly and downwardly toward the ground. At the forward picking end is provided a picker roller for lifting the lumber pieces from the ground. On one side of the picker roller is provided a drive conveyer which is generally vertical and operable in forward and reverse direction to orient the pieces. On the side opposite to the drive conveyers provided a vertical blade with a rearwardly inclined inner portion which blade can pivot inwardly to push the lumber pieces toward the drive conveyer and to enclose and squeeze the pieces to a position inward of the side of the conveyer. Behind the vehicle is mounted a stacking section which arranges the pieces in a row and then stacks part of the row on top of another part to form the stack. The stack passes through a frame which clamps the pieces together to squeeze the stack and also to wrap the stack with a strapping carried into place by a chain.
Abstract:
The invention relates to a stacking column for storing goods on top of each other or next to each other on pawls (1) which rotate about a rotational axis (2) from an idle position into a working position. The respective successive pawls (1) are mutually coupled by means of at least one link plate (9). In order to reduce the gap or pitch (T) between adjacent pawls (1), the at least one link plate (9) is angular, elbowed or arc-shaped.
Abstract:
A crossover device for a finger jointer includes a chain having teeth to grip the end of a workpiece and move it perpendicular to a main conveyor direction. A main conveyor and a crossover conveyor may be driven by the same drive mechanism.
Abstract:
A method and device for forming groups of products, whereby a substantially continuous input succession of products is fed to an input of an endless conveyor, which has a conveying branch and a return branch extending between the input and an output, and which has a variable speed drive member operated to impart a variable speed to the conveyor at the input, and to generate, along the conveying branch, a succession of equally spaced on-line gaps defining a succession of groups of products; the conveying and return branches are both engaged by a powered compensating device for varying the lengths of the conveying and return branches in complementary manner, so as to maintain a constant speed of the conveyor at the output and compensate for any gaps in the input succession.
Abstract:
A wood-edger for cutting away irregularities left on the edges of wood products, such as planks or boards, comprises a succession of different transferring mechanisms cooperating to regulate the flow of wood products to be processed and to properly position the same for the ultimate edging operation.