Abstract:
The present disclosure relates to spectrometry. A method is disclosed for detecting nitric oxide (NO) without first converting it to nitrogen dioxide (NO2) by determining the intensity of a spectral signature in the range between 2,259 and 2,269 Angstroms. Apparatus is provided which, in one form, utilizes an output shutter arrangement having a plurality of reciprocating vanes operated at mutually exclusive frequencies for passing regions of absorption radiation and continuum radiation. Circuit means is provided for distinguishing the signals derived at the various frequencies to determine the relative amount of particular material in a sample. In another form of the invention, an output chopper is provided having at least three slit apertures, the center aperture being adapted to pass only radiation at an absorptive wavelength and the two outer apertures being adapted to pass radiation in the continuum. A vane is adapted to reciprocate between a first position wherein the chopper passes only radiation through the center aperture and a second position wherein the chopper passes only radiation through the two outer apertures. The area of each of the two outer apertures is preferably one-half the area of the center aperture. A detector viewing radiation passed by the chopper will average the radiation received from the two outer apertures. In yet another aspect of the invention, a window assembly is provided so that the spectrometer may be used as a a stack monitor, the window assembly having a slidable window which may be removed for cleaning purposes.
Abstract:
An optical sensor. The optical sensor comprises a substrate, a Fabry-Perot interferometer, and first and second photodetectors. The Fabry-Perot interferometer comprises a first mirror and a second mirror, and is mounted on the substrate such that light is transmitted through the interferometer to the substrate. The first and second photodetectors are configured to detect light transmitted through the etalon and the substrate. The first photodetector is sensitive to a first wavelength range, and the second photodetector is sensitive to a second wavelength range, and wherein the first and second wavelength ranges each correspond to a different mode of the interferometer.