Abstract:
A vortex flowmeter senses a pressure of vortices in a flowing fluid and transmits an output related to mass flow. The vortex flowmeter includes a dynamic filter filtering the vortex pressure signal. The dynamic filter provides a first filtered output signal and a second filtered output signal. The dynamic filter includes a controllable transfer function. Control circuitry controls the controllable transfer function and provides an output related to mass flow as a function of the first filtered output signal and the second filtered output signal. Transmitter circuitry receives the output signal and transmits a signal related to mass flow.
Abstract:
A waveguide for microwave radar level gages that includes a process sealed barrier in the waveguide that is impedance matched with bore transition sections of the waveguide at opposite ends thereof. The impedance matching results in positioning of the tapered end of the barrier offset from the ends of the bore transition sections.
Abstract:
A process control instrument adapted to provide an output indicative of a parameter of a process fluid is disclosed. The process control instrument is designed to be attachable to a flange having a first passageway filled with process fluid. A body of the process control instrument has an opening adjacent to the first passageway adapted to receive process fluid from the first passageway. An isolation diaphragm is positioned in the opening of the body and separates the opening and the first passageway from a second passageway. A weld ring positioned in the opening is adapted to evenly distribute an attachment force across a support surface such that damage to the isolation diaphragm is minimized.
Abstract:
A temperature transmitter in a process control loop comprises a temperature sensor and a transmitter circuit. The temperature sensor includes a sensor sheath and a sensor element positioned within the sensor sheath. At least one element lead is coupled to the sensor element and extends from the sensor sheath. A sheath lead is coupled to the sensor sheath and extends from the sensor sheath, wherein the element lead and the sheath lead provide signals to be measured. The transmitter circuit includes and A/D converter, a microprocessor and an input-output circuit. The A/D converter is coupled to receive the signals from the element lead and the sheath lead. The microprocessor is coupled to the A/D converter. The input-output circuit is coupled to the microprocessor for communication with the process control loop. The sheath lead allows the transmitter to monitor the sensor sheath's insulation resistance and generation of parasitic sheath-to-lead voltage.
Abstract:
A microwave level gauge has a flange adaptor which includes a first end for coupling to a process connecting flange and a second end for coupling to an electronics housing. The adaptor has a section of reduced cross-sectional area along its length between the first and second ends, which defines a thermal transfer restriction that restricts heat transfer from the first end to the second end. A waveguide extends through the adaptor, from the first end to the second end.
Abstract:
A transmitter in a process control loop measures temperature. A calibrator includes a known calibration element which is connected to the transmitter. Software in the transmitter compares a measured value of the calibration element with the actual value of the calibration element and responsively calibrates the transmitter. The calibrator includes a temperature calibration sensor for coupling to a terminal block of the transmitter. The temperature calibration sensor provides an actual temperature input to the transmitter. The transmitter measures actual temperature of the terminal block and compares actual temperature with a temperature measured by an internal terminal block temperature sensor, and responsively calibrates the internal temperature sensor.
Abstract:
Transmitter in a process control system includes a resistance sensor sensing a process variable and providing a sensor output. Sensor monitoring circuitry coupled to the sensor provides a secondary signal related to the sensor. Analog-to-digital conversion circuitry coupled to the sensor output and the sensor monitoring circuitry provides a digitized sensor output and a digitized secondary signal. Output circuitry coupled to a process control loop transmits a residual life estimate related to residual life of the sensor. A memory stores a set of expected results related to the secondary signal and to the sensor. Diagnostic circuitry provides the residual life estimate as a function of the expected results stored in the memory, the digitized sensor output and the digitized secondary signal.
Abstract:
A transmitter in a process control system for measuring flow rate measures total pressure (P.sub.TOT) and differential pressure (h) of process fluid flowing through a process pipe. The static pressure (P.sub.STAT) is determined based upon the total pressure (P.sub.TOT). The calculated static pressure is used to determine the fluid density (.rho.) and the gas expansion factor (Y.sub.1) of the process fluid flowing in the pipe. This information is used to calculate flow rate (Q) of the process fluid.
Abstract:
An elongated pressure sensor includes an inner bar carried within an elongated hollow member. A gap formed between the bar and elongated hollow member changes shape in response to a pressure applied to the elongated hollow member. Capacitive electrodes on the elongated hollow member and bar have a capacitance which changes in response to applied pressure. The sensor is adapted for coupling to a multifunction body.