Abstract:
An apparatus includes a header containing a sensor configured to measure pressure and a sensor body connected to the header, where the sensor body and the header form a pressure vessel configured to receive an input pressure. The header is connected to the sensor body such that the input pressure received on an inner surface of the header is substantially equal to the input pressure received on an outer surface of the header. A lowest connection point of the header to the sensor body may be located at or above a highest point at which the input pressure extends into the header. A lower portion of the header may be unconnected to the sensor body and extend into an interior volume of the sensor body. The header may include a vent configured to expose the sensor to atmospheric pressure or a lower-pressure input pressure.
Abstract:
A pressure transmitter system for measuring a pressure of a process fluid in an industrial process includes a pressure transmitter having a pressure sensor. A process fluid passageway having a circular opening is configured to couple pressure of the process fluid to the pressure sensor. A concentric seal support structure extends around the circular opening comprising an annular recess. An annular stress riser is positioned radially inward from the annular recess. A seal material fills the annular recess and contacts at least a portion of the annular stress riser.
Abstract:
A pressure transmitter system for measuring a pressure of a process fluid in an industrial process includes a pressure transmitter having a pressure sensor. A process fluid passageway having a circular opening is configured to couple pressure of the process fluid to the pressure sensor. A concentric seal support structure extends around the circular opening comprising an annular recess. An annular stress riser is positioned radially inward from the annular recess. A seal material fills the annular recess and contacts at least a portion of the annular stress riser.
Abstract:
A process transmitter for sensing a process variable includes a transmitter housing, a sensor, transmitter circuitry, a passageway and a flame arrestor. The transmitter housing has an interior. The sensor is disposed within the interior, senses a process variable of an industrial process and generates a sensor signal. The transmitter circuitry is disposed within the interior and connects to the sensor. The passageway is in communication with the sensor and extends through the interior of the transmitter housing. The passageway has a first cross-sectional profile. The flame arrestor is positioned in the passageway. The flame arrestor has a second cross-sectional profile different from the first cross-sectional profile. The flame arrestor produces a path in an interior of the passageway having a smaller cross-sectional area than that of the first cross-sectional profile of the passageway.
Abstract:
A pressure gauge, or transducer, for high-temperature applications, comprising a sensor module with a sensor body having a measuring cell chamber containing a pressure measuring cell. The pressure measuring cell can be subjected to the action of a pressure via a first hydraulic path filled with a transmission liquid. The pressure gauge also comprises a transmission module for transmitting a pressure to the first hydraulic path. The transmission module has a second hydraulic path, which is filled with a transmission liquid and extends from a process diaphragm, through a transmission body and to a transmission diaphragm. The transmission diaphragm is attached to the transmission body in a pressure-tight manner, and the sensor body is joined to the transmission body in a pressure-tight manner, whereby the transmission diaphragm communicates with the first hydraulic path so that the pressure of the second hydraulic path can be transmitted via the transmission diaphragm to the first hydraulic path.
Abstract:
A gas physical quantity detecting device is basically provided with detection element, a detection element chamber and a filter. The detection element is configured to detect a physical quantity of a gas flowing through a gas flow passage. The detection element chamber contains the detection element and configured to supply gas from inside the gas flow passage to the detection element. The filter is arranged between the gas flow passage and the detection element chamber. The filter has a predetermined thickness with the filter being made of a non-hydrophobic material.
Abstract:
A relative pressure measuring transmitter resistant to the intrusion of moisture. includes a housing, an insert arranged in the housing, a gap existing between the housing and the insert, a relative pressure sensor, and, connected to the relative pressure sensor, a reference pressure supply line, which leads into the insert, opens on an outer wall of the insert, and has an interior, which is connected via an opening in insert with the gap The housing has a bore passing through it, via which the gap is placed in communication with an environment of the relative pressure measuring transmitter.
Abstract:
A process seal for a process control transmitter is provided. The seal includes a contact region which provides a metal to metal seal against a coupling flange.
Abstract:
A pressure transmitter includes an isolator mounting assembly for isolating process fluid from an interior cavity of the pressure transmitter. The isolator mounting assembly includes an isolator plug for receiving the process fluid line pressure and coupling the line pressure to a sensor cavity formed by a header joined to a distal end of the plug. A ring member is attached to the header and the distal end of the plug to reinforce the joint formed between the isolator plug and the head. In another embodiment, the isolator mounting assembly includes a base and a support having first and second opposed ends. The first end is rigidly bonded to the pressure sensor while an epoxy joint joins the second end of the support to the base.
Abstract:
An apparatus includes a sensor body and a sensor configured to measure pressure. The apparatus also includes at least one pressure input in or on the sensor body, where the at least one pressure input is configured to provide at least one input pressure to the sensor. The apparatus further includes multiple fluid passages configured to convey the at least one input pressure from the at least one pressure input to the sensor using a fill fluid. The multiple fluid passages are configured to both (i) transport the fill fluid and (ii) absorb thermal energy in a flame created by the sensor before the flame exits the sensor body. The fluid passages can include long and narrow straight passages, long and narrow curved or helical passages, and turns or bends. The fluid passages can have small cross-sections relative to their lengths.