DEVICES FOR DETECTING TARGET BIOLOGICAL MOLECULES FROM CELLS AND VIRUSES

    公开(公告)号:US20190323069A1

    公开(公告)日:2019-10-24

    申请号:US16366731

    申请日:2019-03-27

    Abstract: Described herein are fluid-manipulation-based devices. Fluid manipulations as described herein can be configured to perform assays on biological samples. In an embodiment, the device includes a reaction chamber, which can include an integrated sample isolation module, a cell lysis module, a biological target purification module, and an assay mixing module, which can include a microbead with a capture molecule coupled thereto and a nanoparticle having a probe molecule coupled thereto via a label, which can be a spectroscopic label. In an embodiment, the capture and probe molecules can be configured to be coupled together via a biological target to form a biological molecule bead complex. Devices and methods as described herein can manipulate and analyze nanoliter volumes of fluid, microliter volumes of fluid, milliliter volumes of fluid, or greater. Embodiments of the present disclosure can enable random biological assays and rapid, simultaneous analysis of multiple biological samples.

    MEMRISTIVE LEARNING FOR NEUROMORPHIC CIRCUITS
    174.
    发明申请

    公开(公告)号:US20190311263A1

    公开(公告)日:2019-10-10

    申请号:US16345533

    申请日:2017-10-27

    Abstract: Memristive learning concepts for neuromorphic circuits are described. In one example case, a neuromorphic circuit includes a first oscillatory-based neuron that generates a first oscillatory signal, a diode that rectifies the first oscillatory signal, and a synapse coupled to the diode and including a long-term potentiation (LTP) memristor arranged in parallel with a long-term depression (LTD) memristor. The circuit further includes a difference amplifier coupled to the synapse that generates a difference signal based on a difference between output signals from the LTP and LTD memristors, and a second oscillatory-based neuron electrically coupled to the difference amplifier that generates a second oscillatory signal based on the difference signal. The circuit also includes a feedback circuit that provides a feedback signal to the LTP and LTD memristors based on a difference or error between a target signal and the second oscillatory signal.

    Capsid-mutated rAAV vectors and methods of use

    公开(公告)号:US10426844B2

    公开(公告)日:2019-10-01

    申请号:US15246385

    申请日:2016-08-24

    Abstract: Disclosed are capsid-mutated rAAV vectors and methods for their use in gene therapy, and particularly for use in delivering therapeutic transgenes to treat a variety of mammalian diseases and disorders, including dysfunctions and abnormal conditions of the human eye. VP3 capsid proteins comprising a modification of one or more of the surface-exposed tyrosine residues are disclosed, and in particular, VP3 capsid protein comprising tyrosine-to-phenylalanine mutations at positions corresponding to Y444F, Y500F, and Y730F of the wild-type AAV2 sequence. Also provided are rAAV virions and viral particles that comprise such a mutated AAV capsid protein and a nucleic acid molecule that expresses one or more selected therapeutic or reporter transgenes in one or more mammalian cells of interest. Advantageously, the capsid-mutated rAAV vectors and virions disclosed herein afford improved transduction efficiency in a variety of cells, tissues and organs of interest, when compared to their unmodified (i.e., wild-type) rAAV vector counterparts.

    ELECTRO-FLUID TRANSDUCERS
    177.
    发明申请

    公开(公告)号:US20190249695A1

    公开(公告)日:2019-08-15

    申请号:US16395767

    申请日:2019-04-26

    Abstract: The present disclosure is directed towards electro-fluid transducers that may influence the flow of a fluid in and around a channel. In one such embodiment, a system comprises a first electrode at least partially encapsulated by a first dielectric; a second electrode at least partially encapsulated by a second dielectric, wherein a portion of a channel exists between the first dielectric and the second dielectric; a third electrode positioned in the channel; and a fourth electrode positioned in the channel, wherein the electrodes influence a flow of a fluid in the channel upon the electrodes being energized.

Patent Agency Ranking