Abstract:
In a dual-mode satellite/cellular phone system, a user has the option of placing or receiving calls to and from the satellite network with either the cellular/PCS phone or the fully self-contained, stand-alone satellite phone. If the user places or receives a satellite call with the cellular/PCS phone, the communication signals to and from the cellular/PCS phone will first be received from or transmitted to the satellite phone over a short-range, low-power communication link. The satellite phone, in turn, communicates directly with the satellite network from a location that is within a short range of the cellular/PCS phone, and from a location that preferably has a direct line-of-sight with the one or more satellites that make up the satellite network.
Abstract:
A mobile satellite radiotelephone system uses some of the capacity of a fixed satellite radiotelephone system in areas of congestion. Capacity sharing is obtained by providing at least one fixed retransmitting station in an area of overlap between the fixed and mobile satellite radiotelephone systems. The fixed retransmitting station retransmits communications between the fixed satellite radiotelephone system and at least one of the mobile radiotelephones in the vicinity thereof. The fixed retransmitting station communicates with the mobile radiotelephones using the mobile radiotelephone air interface, so that the communication is transparent to the mobile radiotelephones.
Abstract:
A multi-piece retractable radiotelephone antenna and associated communication method is employed to provide improved signal quality. The multi-piece antenna includes conductive windings, such as helical quadrafillar windings, disposed separately on two slidably cooperating substrate members. The antenna is mechanically extended to a deploy position and the separate windings are electrically connected thereby doubling the effective electrical length of the antenna.
Abstract:
An apparatus for improving the link margin of a communication link includes a variable rate vocoder which decreases the output bit stream rate it produces so as to reduce the amount of information having to be transmit in the communication link. In one embodiment, the variable rate vocoder includes a plurality of vocoder portions, each of which produces a different bit stream rate. The selector is used for selecting among the output bit streams produced by each vocoder. In another embodiment, a logic device is coupled to the output of the vocoder. The logic device, upon receipt of a control signal, truncates the less important bits. The method for improving link margin includes reducing the vocoder output rate thereby reducing the amount of data being transmit in an communication link. The method also includes using increased error correction coding and transmitting at increased per bit power levels to increase link margin. A device knows to increase the link margin whenever it receives a request to do so, which request is based upon poor signal quality.
Abstract:
A bandwidth reduction technique is disclosed for use in digital systems wherein a pair of data signal elements modulate quadrature-related carriers. This modulation, referred to as quadrature amplitude modulation (QAM), phase shift keying (PSK) or amplitude and phase shift keying (APSK), generates a double-sideband signal which is transmitted in a variety of communications systems. In accordance with the present invention, the above-described double-sideband signal is filtered to form either a single sideband or vestigial sideband signal prior to transmission. While this use of a vestigial or single-sideband signal, in lieu of a double-sideband signal, permits the transmission of more information in a given frequency interval, the filtering process contaminates the data signal elements. To recover the data signal elements at the receiver, a pair of received signal elements is formed by extracting the carrier signals. One of these received signal elements is then altered at selected times to recover an associated one of the data signal elements at each selected time. Finally, this associated data signal element at certain ones of the selected times is combined with the other one of the received signal elements at an associated time to form the remaining data signal element.
Abstract:
Interference between satellite radioterminal communications systems may be reduced by transmitting and receiving satellite uplink frequencies in a Time Division Duplex (TDD) mode by a wireless base station in a first sector thereof, while simultaneously refraining from transmitting and receiving satellite uplink frequencies in the TDD mode by the wireless base station in a second sector thereof that points to a low elevation angle satellite. Satellite uplink frequencies may be transmitted and received in the TDD mode by a satellite that communicates with radioterminals in the second sector.
Abstract:
A satellite radiotelephone system includes a space-based component, a plurality of ancillary terrestrial components, and a plurality of radiotelephones. The space-based component is configured to provide wireless radiotelephone communications using satellite radiotelephone frequencies. The plurality of ancillary terrestrial components include a plurality of ancillary terrestrial component antennas configured to provide wireless radiotelephone communications using at least one of the satellite radiotelephone frequencies in a radiation pattern that increases radiation below the horizon compared to above the horizon. The plurality of radiotelephones are configured to communicate with the space-based component and with the plurality of ancillary terrestrial components. Each radiotelephone also includes a GPS signal processor and a GPS mode filter that is configured to suppress energy at (1575.42−Δ) MHz, where 0
Abstract:
First radio signals are received by a first satellite, the received first radio signals including a desired satellite uplink signal transmitted from a first source using a frequency assigned to the first source and an interfering signal transmitted from a second source using the frequency assigned to the first source. The first radio signals are combined based on a first performance criterion to generate a first output signal. Second radio signals are received by a second satellite, the received second radio signals including a measure of the desired signal. The second radio signals are combined based on a second performance criterion to produce a second output signal. The first and second output signals are combined to generate an estimate of the desired satellite uplink signal.
Abstract:
A system for communications on an extraterrestrial body may include a space-based component and an ancillary extraterrestrial component on the extraterrestrial body. The space-based component may be configured to provide wireless communications with a plurality of radioterminals located on the extraterrestrial body over a satellite frequency band wherein the space-based component includes at least one satellite orbiting the extraterrestrial body. The ancillary extraterrestrial component may be configured to provide wireless communications with the plurality of radioterminals located on the extraterrestrial body. Moreover, the ancillary extraterrestrial component may reuse at least one satellite frequency of the satellite frequency band, and the space-based component and the ancillary extraterrestrial component may be configured to relay communications therebetween. Related methods are also discussed.
Abstract:
An available signal space, whether it is a priori specified or is cognitively determined based upon an assessment of frequency utilization, serves to provide a number of signal dimensions which may be occupied by a number of pseudo-randomly generated waveforms. The number of pseudo-randomly generated waveforms may be based upon a key input to a pseudo-random number generator and a desired statistical distribution and may be subjected to an orthogonalization procedure to produce a respective number of orthogonal pseudo-random waveforms which may serve as a communications alphabet. A specific data sequence to be communicated may be associated with a respective specific element/member of the orthogonal pseudo-random waveforms and that specific element/member may be transmitted in lieu of the specific data sequence. Systems/methods of spread-spectrum communications that are substationally devoid of revealing signatures such as chipping and cyclostationarity are presented, offering increased privacy, reduced detectability and reduced exploitation of communications.