Abstract:
Disclosed is a composition comprising ligustroflavone, rhoifolin and hyperin, which is prepared according to rational weight ratio: 40% to 80% ligustroflavone, 5% to 45% rhoifolin and 1% to 40% hyperin. The composition can be used as a neuraminidase inhibitor for preventing and treating influenza, and can be formulated into pharmaceutically acceptable dosage forms.
Abstract:
Molecular filters are disclosed herein. An example of the molecular filter includes a rolled substrate having an interior surface and opposed ends that are substantially orthogonal to the interior surface. The rolled substrate defines a layer and a fluid flow path extending from one of the opposed ends to another of the opposed ends. A template is positioned on the interior surface of the rolled substrate. The template includes a matrix, and molecule template locations formed in the matrix.
Abstract:
A sensor-location system for locating sensors in a tract covered by an earth-based sensor network. The sensor-location system includes at least one sensor-identification device, and at least one sensor locator. The sensor-identification device is affixed to a respective sensor in the earth-based sensor network. The sensor locator is configured for use from on board of an aircraft. In addition, the sensor locator is configured to acquire geographic-location data of said sensor including an identifying signature from the sensor-identification device of the sensor in the tract covered by the earth-based sensor network.
Abstract:
An ionic device includes a layer (220) of an ionic conductor containing first and second species (222, 224) of impurities. The first species (222) of impurity in the layer (220) is mobile in the ionic conductor, and a concentration profile of the first species (222) determines a functional characteristic of the device (200). The second species (224) of impurity in the layer (220) interacts with the first species (222) within the layer (220) to create a structure (226) that limits mobility of the first species (222) in the layer (220).
Abstract:
An apparatus for performing Surface Enhanced Raman Spectroscopy (SERS) includes a reflective layer positioned above the substrate, a plurality of tapered nanowires disposed above the reflective layer, each of the plurality of tapered nanowires having a tapered end directed away from the reflective layer.
Abstract:
A novel method is described to create low-relief texture at a light-facing surface or a back surface of a photovoltaic cell. The peak-to-valley height and average peak-to-peak distance of the textured surface is less than about 1 microns, for example less than about 0.8 micron, for example about 0.5 microns or less. In a completed photovoltaic device, average reflectance for light having wavelength between 375 and 1010 nm at a light-facing surface with this texture is 6 percent or less, for example about 5 percent or less, in some instances about 3.5 percent. This texture is produced by forming an optional oxide layer at the surface, lightly buffing the surface, and etching with a crystallographically selective etch. Excellent texture may be produced by etching for as little as twelve minutes or less. Very little silicon, for example about 0.3 mg/cm2 or less, is lost at the textured surface during this etch.
Abstract:
An autonomous light amplifying device for surface enhanced Raman spectroscopy includes a dielectric layer, at least one laser cavity defined by at least one light confining mechanism formed in the dielectric layer, at least one nano-antenna established on the dielectric layer in proximity to the at least one laser cavity, and a gain region positioned in the dielectric layer or adjacent to the dielectric layer.
Abstract:
An environment sensitive device is disclosed. The device includes a substrate, a three-dimensional structure established on the substrate, a first coating established on a first portion of the three-dimensional structure, and a second coating established on a second portion of the three-dimensional structure. The first and second coatings contain different materials that are configured to respond differently when exposed to a predetermined external stimulus.
Abstract:
A configurable grating based on collapsing nano-fingers includes a substrate; and a plurality of bendable nano-fingers supported on the substrate. The nano-fingers may be formed in a regular first array and the nano-fingers may be formed in a spacing that, upon closing at their tops, forms a second array to act as an optical grating or a diagnostic tool. A method of fabricating a configurable optical grating based on collapsing nano-fingers is also disclosed, as well as a method of determining an open or closed state for a plurality of nano-fingers.
Abstract:
A nanorod surface enhanced Raman spectroscopy (SERS) apparatus, system and method of SERS using nanorods that are activated with a key. The nanorod SERS apparatus includes a plurality of nanorods, an activator to move the nanorods from an inactive to an active configuration and the key to trigger the activator. The nanorod SERS system further includes a Raman signal detector and an illumination source. The method of SERS using nanorods includes activating a plurality of nanorods with the key, illuminating the activated plurality of nanorods, and detecting a Raman scattering signal when the nanorods are in the active configuration.