Abstract:
A turbofan engine includes in serial flow communication a first fan, second fan, multistage compressor, combustor, first turbine, second turbine, and third turbine. The first turbine is joined to the compressor by a first shaft. The second turbine is joined to the second fan by a second shaft. And, the third turbine is joined to the first fan by a third shaft. First, second, and third cooling circuits are joined to different stages of the compressor for cooling the forward and aft sides and center bore of the first turbine with different pressure air.
Abstract:
According to an embodiment of the invention, a method for repairing a coated high pressure turbine blade, which has been exposed to engine operation, to restore coated airfoil contour dimensions of the blade, is disclosed. The method comprises providing an engine run high pressure turbine blade including a base metal substrate made of a nickel-based alloy and having thereon a thermal barrier coating system. The thermal barrier coating system comprises a diffusion bond coat on the base metal substrate and a top ceramic thermal barrier coating comprising a yttria stabilized zirconia material. The top ceramic thermal barrier coating has a nominal thickness t. The method further comprises removing the thermal barrier coating system, wherein a portion of the base metal substrate also is removed, and determining the thickness of the base metal substrate removed. The portion of the base metal substrate removed has a thickness, Δt. The method also comprises reapplying the diffusion bond coat to the substrate, wherein the bond coat is reapplied to a thickness, which is about the same as applied prior to the engine operation; and reapplying the top ceramic thermal barrier coating to a nominal thickness of t+Δt, wherein Δt compensates for the portion of removed base metal substrate. Advantageously, the coated airfoil contour dimensions of the high pressure turbine blade are restored to about the coated dimensions preceding the engine run.
Abstract:
A component includes at least one wall having an inner portion and an outer portion. A number of pins extend between the inner and outer portions of the wall. The pins define a mesh cooling arrangement having a number of flow channels. A number of dimples are located in at least one of the inner and outer portions of the wall. The component may also include a number of turbulators disposed on at least one of the inner and outer portions of the wall.
Abstract:
An actively cooled TBC bond coat wherein active convection cooling is provided through micro channels inside or adjacent to a bond coat layer applied to a substrate. The micro channels communicate directly with at least one cooling fluid supply contained within a turbine engine component, thereby providing direct and efficient cooling for the bond coat layer. Because the substrate is covered with an actively cooled bond coat layer, it will reduce the cooling requirement for the substrate, thus allowing the engine to run at higher operating temperature without the need for additional cooling air, achieving a better engine performance. In one form, the component includes a substrate having at least one substrate channel with a first and second end. At least one micro channel is in fluid communication with a plenum which in turn is in fluid communication with at least one substrate channel through an exit orifice in the substrate channel which is at a first end of the substrate channel. A second end of the substrate channel is in communication with a cooling fluid supply, for example, cooling circuits contained within the turbine engine component. The micro channel is located between the substrate surface and the outer gas flow path surface of the component.
Abstract:
A turbine engine component is provided that has a surface that contains a plurality of depressions that are effective to increase the surface area of the component. The depressions are generally concave in contour and improve the heat transfer characteristics of the component. Methods for forming the turbine engine components are also disclosed.
Abstract:
A method of enhancing heat transfer and cooling efficiency in a cooling passage includes forming a plurality of turbulator rings in the passage, the rings projecting inwardly, substantially perpendicular to a cooling flow direction in the passage; and using a patterned electrode, forming at least one gap in one or more of the turbulator rings, extending substantially parallel to the flow direction.
Abstract:
A combustor liner is provided on its backside cooling surface with a braze alloy coating and cooling enhancement material, preferably metallic particles to enhance the heat transfer between the liner and the cooling medium. The surface area of the backside coated area is increased substantially by the coating and particles in relation to the uncoated surface areas. Consequently, the life of the liner is extended.
Abstract:
A process for creating microgrooves within or adjacent to a TBC layer applied to a gas turbine engine component such as a blade or vane. The process includes the steps of applying a bond coat to the surface of the substrate. A wire mesh is placed a predetermined distance above the bond coat surface. With the wire mesh in position, about 0.002 inches of an inner TBC is applied over the bond coat. The wire in the wire mesh causes a shadow effect as the TBC is applied, so that there are variations in the thickness of the applied TBC, forming micro channels. The wire mesh is removed and an additional outer TBC layer is applied over the inner TBC layer, and the variations in thickness are bridged by the continued deposition of the columnar TBC over the inner TBC layer, forming the microgrooves.
Abstract:
A method of forming a turbine engine component, includes providing a mold having a textured region, pouring a molten alloy into the mold, and cooling the molten alloy to form a turbine engine component, wherein the turbine engine component has an enhanced surface area region corresponding to the textured region of the mold, the enhanced surface area region comprising randomly arranged bumps.
Abstract:
The present invention provides active convection cooling through micro channels within or adjacent to a bond coat layer applied to the trailing edge of a turbine engine high pressure airfoil. When placed adjacent to or within a porous TBC, the micro channels additionally provide transpiration cooling through the porous TBC. The micro channels communicate directly with at least one cooling circuit contained within the airfoil from which they receive cooling air, thereby providing direct and efficient cooling for the bond coat layer. Because the substrate includes an actively cooled flow path surface region that can reduce the cooling requirement for the substrate, the engine can run at a higher firing temperature without the need for additional cooling air, achieving a better, more efficient engine performance. In one embodiment, a metallic bond coat is added to an airfoil with pressure side bleed film cooling slots. The bond coat is grooved such that the grooves are structured, with at least one structured micro groove communicating with at least one cooling fluid supply contained within the airfoil. A TBC layer is applied, using a shadowing technique, over the structured grooves, resulting in the formation of hollow micro channels for the transport of the cooling fluid. In different embodiments, the location of the structured grooves, hence, the resulting micro channels are placed within the airfoil substrate at the substrate/bond coat interface or within the TBC layer.