Abstract:
A method of communicating over a wideband communication channel divided into a plurality of sub-channels comprises dividing a single serial message intended for one of the plurality of communication devices into a plurality of parallel messages, encoding each of the plurality of parallel messages onto at least some of the plurality of sub-channels, and transmitting the encoded plurality of parallel messages to the communication device over the wideband communication channel.
Abstract:
An equalizer comprises a hard decision block which feeds an FEC block and a shift register, which uses past estimates during a first iteration. The output of the FEC block is fed back to the shift register during a subsequent iteration to fully remove any inter chip interference.
Abstract:
Apparatus and methods of ultra-wideband (UWB) communication are provided. In one embodiment, an UWB communication system transmits a serial data stream comprising a plurality of ultra-wideband pulses. These UWB pulses are received at a receiver that splits the serial data stream into a plurality of parallel data streams. The phase of at least one of the plurality of parallel data streams is then shifted, and then the plurality of parallel data streams are combined into a combined data stream. This Abstract is provided for the sole purpose of complying with the Abstract requirement rules that allow a reader to quickly ascertain the subject matter of the disclosure contained herein. This Abstract is submitted with the explicit understanding that it will not be used to interpret or to limit the scope or the meaning of the claims.
Abstract:
Systems and methods of ultra-wideband communication are provided. In one ultra-wideband communication system, a portion of a plurality of non-overlapping communication sub-channels are assigned to a first ultra-wideband communication device by a base station. Communication interference information is obtained by the first device, and then transmitted to and received by the base station. The base station then reduces the portion of non-overlapping sub-channels assigned to the first ultra-wideband communication device in response to the interference information, thereby creating a group of available non-overlapping sub-channels, which are assigned to a second ultra-wideband communication device. This Abstract is provided for the sole purpose of complying with the Abstract requirement rules that allow a reader to quickly ascertain the subject matter of the disclosure contained herein. This Abstract is submitted with the explicit understanding that it will not be used to interpret or to limit the scope or the meaning of the claims.
Abstract:
Apparatus and methods of ultra-wideband communication are provided. In one embodiment, an ultra-wideband transmitter comprises a pulser that receives a first data stream comprising high and low signal values. The pulser generates ultra-wideband pulses corresponding to the high signal values. A second pulser receives a second data stream and generates ultra-wideband pulses corresponding to the second data stream high signal values. A combiner then combines the ultra-wideband pulses and generates a combined plurality of ultra-wideband pulses, and a filter filters and shapes the plurality of ultra-wideband pulses prior to transmission. This Abstract is provided for the sole purpose of complying with the Abstract requirement rules that allow a reader to quickly ascertain the subject matter of the disclosure contained herein. This Abstract is submitted with the explicit understanding that it will not be used to interpret or to limit the scope or the meaning of the claims.
Abstract:
A communication protocol for ultra-wideband communications is provided. The present invention provides compatibility and interoperability between ultra-wideband communications devices within various types of networks. In one embodiment, combined, or interleaved data frames having both high and low data transfer rate capability are provided. The low data transfer rate may be used for initial discovery of the type of network that is being accessed, and the high data transfer rate may be used to quickly transfer data within networks that have a high data transfer rate capability. This Abstract is provided for the sole purpose of complying with the Abstract requirement rules that allow a reader to quickly ascertain the subject matter of the disclosure contained herein. This Abstract is submitted with the explicit understanding that it will not be used to interpret or to limit the scope or the meaning of the claims.
Abstract:
Apparatus and methods of ultra-wideband communication are provided. In one embodiment, an ultra-wideband receiver comprises an envelope detector that detects the amplitude of a received ultra-wideband pulse and generates a waveform representative of the envelope of the received ultra-wideband pulse. A sign detector then determines a sign associated with a data bit encoded on the received ultra-wideband pulse. This Abstract is provided for the sole purpose of complying with the Abstract requirement rules that allow a reader to quickly ascertain the subject matter of the disclosure contained herein. This Abstract is submitted with the explicit understanding that it will not be used to interpret or to limit the scope or the meaning of the claims.
Abstract:
A system and method of frame synchronization and detection for use in a digital receiver within a communication system. The digital radio communication system includes a receiver for receiving a signal stream that includes data frames. Each frame includes an arbitrary data sequence and a unique word. A predetermined number of contiguous bits from the unique word are appended to the beginning of each data frame to identify the start of the data frame. The communication system comprises a sampling circuit for sampling symbol levels, a filter to implement the cross correlation of the received signal with the stored unique word, a threshold detector circuit to detect when frame synchronization is achieved as well as additional circuitry to refine the estimate from the threshold detection circuit. The design utilizes coherent demodulation. However, the design is equally applicable to non-coherent demodulation. In one embodiment, the sampling rate is assumed to be two samples per symbol. However, the functionality of the proposed design is not limited to two samples per symbol.
Abstract:
A receiver for receiving a signal stream in a digital radio communication system. The signal stream includes data frames where each frame including a data signal sequence and a synchronizing signal sequence. The communication system synchronizes the receiver by employing the signal stream. The receiver includes a sampling circuit for sampling symbol levels in the synchronizing signal sequence and a synchronization subsystem. The synchronization subsystem utilizes a frame synchronization circuit, a dynamic interpolator and a decision-directed phase tracking mechanism for removing residual frequency and phase offsets. The synchronization subsystem also includes a threshold detection mechanism for comparing values derived from the sampled frame synchronization output with a predefined value which determines whether synchronization has occurred or not. The dynamic interpolator includes a circuit for generating the interpolation coefficients for timing and initial phase estimation, a maximum likelihood timing and phase estimator, and a data interpolation and decimation unit. The estimated timing offset and phase offset in the dynamic interpolator may change for each frame in the signal stream.
Abstract:
A combiner circuit and method for use in a digital transmitter within a communication system. The combiner circuit receives a number of signal streams that include data frames. Each frame includes an arbitrary data sequence and portions of a unique word. The combiner circuit comprises a plurality of digital preamble circuits which append a predetermined number of contiguous bits from the unique word to each data frame. The system utilizes a plurality of spreaders, shifters, and a summer to further modify the data stream for transmission.