Abstract:
Described herein is a surface-mounted integrated current sensor for use in a printed circuit having a track along which there flows, in use, the electric current to be measured. The current sensor comprises a package having a bottom face facing, in use, the printed circuit, and on which there is set an electrically conductive bottom piece, which, in use, makes contact with the track of the printed circuit in such a way as to be traversed by the current to be measured. The current sensor moreover comprises a sensor element, for example a Hall-effect one, designed to generate a voltage proportional to the electric current that flows through the bottom piece.
Abstract:
There is described a method of operating a device (1) controlling electric actuators (3), and having a pair of input terminals (4, 5) connected to an electric energy source (6, 10); a number of pairs of output terminals (7, 8), between each of which a respective electric actuator (3) is connected in use; and controlled switches (11, 12) for connecting the electric actuators (3) to the electric energy source (6, 10) independently of one another; the method including the step of controlling the controlled switches (11, 12) to supply an electric current to the electric actuators (3) via the electric energy source (6, 10). The controlling step includes the steps of: determining the possibility of a subsequent operating condition in which specific electric actuators (3) are supplied simultaneously with electric current from the electric energy source (6, 10); and temporally phase shifting the electric currents supplied to the specific electric actuators (3), to reduce the effective value of the electric current drawn from the electric energy source (6, 10).
Abstract:
A drive device for inductive electroactuators equipped with a power circuit comprising a drive circuit for each electroactuator; each drive circuit comprising a series of selectively controlled transistors for regulating the current flowing through the electroactuator; a control circuit which is capable of driving the operation of each control circuit and a series of control modules, each of which controls the transistors of an associated control circuit; and a memory having at least two memory areas each storing the same operating parameters for the drive circuits; an internal microcontroller for reading the operating parameters; and a series of pointer registers which cooperate with the internal microcontroller and with an external microcontroller to define access of the external microcontroller to one of the memory areas and simultaneously to define access of the internal microcontroller to the other memory area, and to swap the access rights of the internal microcontroller and of the external microcontroller to the two memory areas.
Abstract:
The control device comprises a piloting circuit for the electroactuators and a timing circuit which generates timing signals supplied to the piloting circuit for control of the electroactuators. The piloting circuit has a first and a second input terminal which are connected in use respectively to a first and a second terminal of an electrical energy source, and a plurality of pairs of output terminals, one for each electroactuator; each pair of output terminals comprising a first and a second output terminal, between which a respective electroactuator is connected in use. The piloting circuit comprises a plurality of control circuits, one for each electroactuator, which receive as input the timing signals and are activated selectively by the timing signals themselves. Each control circuit comprises a first transistor which is connected between a respective first output terminal, and, at least in pre-determined operating conditions, the first input terminal of the piloting circuit; a second transistor connected between a respective second output terminal and the second input terminal of the piloting circuit; and a diode which is connected between the respective first output terminal and the second input terminal of the piloting circuit itself.
Abstract:
The movable element of a solenoid valve is displaced by means of application to the solenoid of alternating phases at constant voltage and at zero voltage, so as to give rise to an alternation of phases of charging and discharging of the solenoid (switching), corresponding to increases and decreases of current around a substantially constant current value. The alternating phases at constant voltage and at zero voltage are controlled so that the phase at constant voltage is maintained for a pre-set time and the phase at zero voltage is terminated when the decreasing current reaches a pre-set value. Alternatively, it is possible to envisage that the phase at constant voltage will be terminated when the increasing current reaches a pre-set value and the phase at zero voltage is maintained for a pre-set time, or else again that both the phase at constant voltage and the phase at zero voltage will be terminated when the increasing current or decreasing current reaches a pre-set value. In any case, the duration of each cycle of charging and discharging of the solenoid is constantly monitored. It is thus possible to identify the instant at which the movable element of the solenoid valve reaches its end-of-travel position as the instant that separates two successive cycles of charging and discharging of the solenoid having durations that differ from one another by a value higher than a pre-set threshold value.
Abstract:
Provided in a gas-feed system, in particular a system for supplying methane or hydrogen to an internal-combustion engine, is an electronic pressure-reducer or pressure-regulator unit, integrated in which are both a pressure-reducing valve for reducing the pressure of the gas coming from the fuel tank to a value suitable for supplying a distribution manifold or rail and a modulating solenoid valve that functions as modulator of the degree of pressure reduction performed by the pressure-reducing valve. Likewise made in the body of said unit are passages that provide the communications of said valves with one another and of each of said valves with the inlet and the outlet for the gas in said unit. Furthermore, the unit incorporates an electronic control module for controlling the modulating solenoid valve.
Abstract:
A microprogrammable electronic device comprises a code memory storing a plurality of instructions. At least one instruction, when executed by the device, causes the device to enter into a wait state associated with a plurality of predefined wait state exit conditions. The device is configured to load into an electronic table each condition together with a corresponding code memory address of an instruction to be executed when the condition occurs; to execute, when is in the wait state, a wait instruction stored in the code memory and which, when executed, is such as to cause the device to check simultaneously the conditions loaded into said electronic table to detect if condition occurs; and, if a condition occurs, to exit from said wait state and to execute the instruction stored in the code memory at the code memory address loaded into the electronic table together with the condition that occurred.
Abstract:
A microprogrammable electronic device has a code memory storing a software and/or firmware code having instructions. The microprogrammable electronic device is configured to compute a signature of the code stored in the code memory, and to detect any corruption of the code stored in the code memory on the basis of the computed signature. The microprogrammable electronic device is characterized by being further configured to operate according to instruction cycles, each divided into a respective first and a respective second operating phase; to read a first instruction from the code memory at the first operating phase of an instruction cycle; to decode and execute the read first instruction at the second operating phase of the instruction cycle; to read a second instruction from the code memory at the second operating phase of the instruction cycle; and to compute the signature on the basis of the read second instruction.
Abstract:
Provided in a gas-feed system, in particular a system for supplying methane or hydrogen to an internal-combustion engine, is an electronic pressure-reducer or pressure-regulator unit, integrated in which are both a pressure-reducing valve for reducing the pressure of the gas coming from the fuel tank to a value suitable for supplying a distribution manifold or rail and a modulating solenoid valve that functions as modulator of the degree of pressure reduction performed by the pressure-reducing valve. Likewise made in the body of said unit are passages that provide the communications of said valves with one another and of each of said valves with the inlet and the outlet for the gas in said unit. Furthermore, the unit incorporates an electronic control module for controlling the modulating solenoid valve.
Abstract:
Described herein is a surface-mounted integrated current sensor for use in a printed circuit having a track along which there flows, in use, the electric current to be measured. The current sensor comprises a package having a bottom face facing, in use, the printed circuit, and on which there is set an electrically conductive bottom piece, which, in use, makes contact with the track of the printed circuit in such a way as to be traversed by the current to be measured. The current sensor moreover comprises a sensor element, for example a Hall-effect one, designed to generate a voltage proportional to the electric current that flows through the bottom piece.