Abstract:
A Mach-Zehnder interferometer (MZI) is provided to receive a coherent input photon in an initial pointer state along an emission direction for producing a continuous variable “faux qubit” in a magic state. The MZI apparatus includes first and second ports, first and second beam-splitters, first and second mirrors, and a modular interaction operator. The emitter produces an input coherent photon in an initial pointer state along an emission direction. The first and second ports are respectively disposed parallel and perpendicular to the emission direction. The first port has a detector. The first beam-splitter is disposed collinearly with the emission direction. The second beam-splitter is disposed between the first and second ports in parallel to and offset from the emission direction. The input photon reflects from the mirrors. Each beam-splitter either passes through or else reflects the input photon. The first mirror is disposed from the first and second beam-splitters respectively perpendicular and parallel to the emission direction. The second mirror is disposed from the first and second beam-splitters respectively collinearly with and perpendicular to the emission direction. The modular interaction operator is disposed between the first mirror and the second beam-splitter for measuring interaction therebetween to thereby generate a post-selected magic state photon. Further embodiments include an actuator that translates the first mirror diagonally to and from the beam-splitters to set coupling strength. Additional embodiments enable a phase angle shift between the first beam-splitter and the first mirror.
Abstract:
A method is provided for determining a thickness L of a chiral slab that refracts incident linearly polarized light into right (+) and left (−) circularly polarized beams. The method includes disposing the slab in an achiral medium, determining values of translation coefficients γ±, determining values for refraction angle differences (θ+−θ−), selecting pre- and post selection states |ψi and |ψj, projecting an emitted light beam through said achiral medium into the chiral slab a small established angle of incidence θ0, varying slab egress phase angles β±, determining said pointer mean value x, calculating weak value Aw, and calculating the thickness as L = 〈 x 〉 Re A w . The achiral medium has an established index of refraction n0. The translation coefficients γ± establish refraction translation differences (γ+−γ−). The pre-selection state |ψi establishes pre-selection alignment angle to satisfy Φ=π/4. The post-selection state |ψj establishes post-selection alignment angle to satisfy χ=Φ−ε and 0 0 or else a minimum for (γ+−γ−)
Abstract:
A quantum dynamical non-locality device is provided for establishing a photon traveling along a path in a binary state. The device includes twin Mach-Zehnder interferometer (MZI), a shutter and a detector. The twin MZI includes first and second right-isosceles triangle prisms, corresponding first and second trombone mirrors, and corresponding first and second spacers. The prisms join at a beam-splitter interface. The mirrors reflect the photon by an offset substantially perpendicular to photon's travel direction. The spacers are respectively disposed between their respective prisms and mirrors to produce corresponding spatial gaps. The path through the prisms includes traversing spacers and gaps. The detector detects a quantum state of the photon after passing the prisms and the mirrors. The shutter switches to one of disposed within and removed therefrom the first gap. The shutter shifts said quantum state of the photon.
Abstract:
An accelerometer instrument is provided for measuring acceleration. The instrument includes a laser, a Mach-Zender interferometer (MZI), a mechanical spring, a detector, a camera, and an analyzer. The laser emits a coherent light beam of photons. The MZI includes first and second beam-splitters along with first and second mirrors. The first mirror has an established mass m and connects to the spring for vibrating substantially perpendicular to its reflection plane. The mechanical spring has an established spring constant k. The MZI has an established weak measurement Nw based on a known offset ε for the beam-splitters. The detector detects the beam beyond the second beam-splitter. The camera provides a pointer measurement shift δq of the photons. The camera is disposed after the detector. The analyzer determines the acceleration α based on a = ( k mN w ) δ q .
Abstract:
A method and apparatus are provided for determining the number of photons in a single-mode, coherent microwave field. A plurality of Rydberg atoms are generated whereby each Rydberg atom has an energy state defined by a plurality of energy levels. The Rydberg atoms are passed through the microwave field one at a time. An exit state of the microwave field in terms of phase is measured as each Rydberg atom exits the microwave field. An exit energy level of each Rydberg atom exiting the microwave field is also detected. The number of Rydberg atoms exiting the microwave field in each of four measurement classes defined by the exit state and exit energy level are counted.
Abstract:
The toroidal computer memory system utilizes toroidal memory paths in its chitecture to enable memory locations along those paths to be obtained in a single access, as compared to multiple accesses typically required by conventional linear computer memory. The storage/retrievable media is designed to replicate paths on the surface of a torus. By defining certain parameters and the mathematical properties of these memory paths in the electronics of a controller, points on the memory paths can be accessed from the storage/retrieval media more efficiently than conventional computer memory.
Abstract:
A magnetometer is provided for detecting a magnetic field of strength B using the Faraday effect. The magnetometer includes a photon emitter, a first polarizer, a prism, a second polarizer, a detector and an analyzer. The emitter projects an emitted light beam substantially parallel to the magnetic field and having wavelength λ. The prism has an interface surface and is composed of a Faraday medium having Verdet value V. The emitted light beam passes through the first polarizer and then the prism, exiting from the interface surface making an incident angle θ0 to normal of the surface and then refracting into a secondary medium as first and second circularly polarized light beams that are separated by a small angular divergence δ. These polarized light beams have average refraction angle θ to the normal and pass through a post-selection polarizer before the detector measures a weak value Aw of a photon having “which path” operator  associated with the polarized light beams. The magnetic field strength is determined as B ≈ - 2 ɛ A w π n 0 cos θ V λsin θ 0 . The parameters include n0 as index of refraction of the secondary medium, and ε as amplification factor. The pointer rotation angle Aw can be expressed as A w = ( θ + - θ - ) cos ɛ + [ ( θ + + θ - ) - 2 θ 0 ] sin ɛ 2 sin ɛ in which θ+ and θ− are respectively right- and left-polarized refraction angles with the average refraction angle such that θ = 1 2 ( θ + + θ - ) . The pointer rotation angle Aw can be approximated as Aw≈δ/2ε when 0
Abstract:
A Mach-Zehnder interferometer (MZI) is provided to receive a coherent input photon in an initial pointer state for producing a continuously variable “faux qubit” in a magic state. The MZI apparatus includes first and second ports, first and second beam-splitters, first and second mirrors, and a modular interaction operator. The emitter produces an input coherent photon in an initial pointer state along an emission direction. The first and second ports are respectively disposed parallel and perpendicular to the emission direction. The first and second beam-splitters are disposed respectively collinearly with the emission direction and between the first and second ports parallel to and offset from the emission direction. The first and second mirrors are disposed respectively offset from and collinearly with the emission direction. The modular interaction operator is disposed between the first mirror and the second beam-splitter for measuring interaction therebetween to generate a post-selected magic state photon.
Abstract:
An m-dimensional memory with m-1 dimensional hyperplane access. Random acs memory (RAM) circuits are arranged in a plurality of groups for storing data words corresponding to vertices of an m-dimensional lattice. Each vertex of the lattice is defined by an m-tuple. The minimum number of RAM circuits required to realize the memory architecture of the present invention is based upon the size of the lattice and the distribution of the data words in memory is based upon the m-tuples used to define the lattice.
Abstract:
A method for relational database scheme design with the aid of a digital puter for a database having attributes A.sub.i, i=1 to n and relational schemes R.sub.j, j=1 to m. Each relational scheme R.sub.j is a non-empty subset of the attributes A.sub.i. The method detects any scheme that is non-acyclic in a simple manner that is easily adapted to a digital computer environment. The resulting relational database scheme design is thereby prevented from being non-acyclic.