Abstract:
A photoreceptor and method of forming the same is disclosed. A photoreceptor includes a substrate, an undercoat layer, and an imaging layer. The undercoat layer comprises a single, non-porous anodized aluminum layer that has an impedance of less than about 50 Kohm. The single, non-porous anodized aluminum layer may be used as the undercoat layer alone, or may be part of a multi-layered undercoat layer system that includes additional layers of other undercoat materials. The use of the non-porous anodized aluminum layer provides the photoreceptor with an extended effective life.
Abstract:
A photoconductive imaging member with linear and proportional collection efficiencies and substantially constant photoinduced characteristics comprised of a supporting substrate, and thereover in, for example, certain weight ratios, a single layer comprised of a mixture of a photogenerator component, a charge transport component, an electron transport component, and a polymer binder, and wherein the photogenerating component is a pigment.
Abstract:
An electrophotographic photoreceptor and method for forming a photoreceptor is disclosed which is provided with an anticorrosion layer on the interface between the supporting substrate surface and the undercoat layer. The photoreceptor has a high mechanical strength and minimizes defects in print for longer periods of time.
Abstract:
Provided is an imaging member comprising a substrate, an undercoat layer (UCL), a charge generation layer, a charge transport layer, and an optional overcoat layer. The undercoat layer is formed from a single-phase UCL coating formulation comprising an organic titanate, a polymer containing active hydrogen, and an aminosilane. The UCL formulation has improved properties such as stability, processing convenience, and longer pot life etc. The UCL formulation can be used to manufacture an imaging member such as photoreceptor with improved properties such as stable, thick UCL coating, resistance to electrical failure, and PIDC independency on UCL thickness etc.
Abstract:
A photoconductive imaging member with linear and proportional collection efficiencies and substantially constant photoinduced characteristics comprised of a supporting substrate, and thereover in, for example, certain weight ratios, a single layer comprised of a mixture of a photogenerator component, a charge transport component, an electron transport component, and a polymer binder, and wherein the photogenerating component is a pigment.
Abstract:
This invention relates to a method for improving chemical stability in a metal or metallized substrate, such as an aluminum substrate, of an electrophotographic-imaging member by treating the substrate with a composition containing a rare-earth metal.
Abstract:
A photoconductive imaging member containing a supporting substrate, and thereover a single layer comprised of a photogenerator component, a charge transport component, an electron transport component, and a polymer binder.
Abstract:
A photoconductive imaging member comprised of a supporting substrate, a hole blocking layer thereover, a photogenerating layer, and a charge transport layer, and wherein the hole blocking layer is comprised of a metallic component and an electron transport component.
Abstract:
A process for forming a dispersion including forming a mixture including agglomerates of primary particles, a film forming binder and a solvent for the binder, the primary particles having an average size of less than about 500 nanometers, applying sufficient heat energy to the mixture while stirring to disintegrate the agglomerates into separate primary particles having an average size of less than about 500 nanometers to form a dispersion substantially free of agglomerates, and slowly cooling the dispersion to maintain separation between the primary particles in the dispersion.
Abstract:
A photoconductor that includes, for example, a supporting substrate, a photogenerating layer, and at least one charge transport layer comprised of at least one charge transport component, and where the charge transport layer contains at least one of an ammonium salt.