Abstract:
A small, low-profile plug connector for use with electronic devices provides a latching member with a pair of hooks that engage mating holes in a guide frame, and which can be easily delatched from the guide frame or opposing connector or housing. The hooks lock the plug connector into engagement with the frame or housing, but are readily released by way of a simple ramp and lobe mechanism in the plug connector. The ramp and lobe mechanism converts horizontal movement of a pull tab actuator into vertical movement of a latching member such that the hooks are lifted upward and disengaged from the guide frame or housing. The pull tab has a configured shape that fits within the width profile of the connector and which partially envelops the cable.
Abstract:
A shielded housing that provides a shield to a circuit board connector of the SFP-style includes a conductive body that encompasses the connector. The housing has an opening that defines an entrance of the housing through which an opposing mating connector may be inserted. The housing also includes a pair of engagement tabs that are bent inwardly of the housing at an angle thereto and these tabs engage openings formed in a shell of a plug connector that mates with the SFP-style connector. The tabs rest in the openings and may be released by way of latching mechanism that is part of the plug connector. This mechanism includes a handle and two arms that extend lengthwise. The arms end in cam portions that contact and lift the engagement ends out of the plug connector shell openings to unlatch the plug connector from the SFP-style connector.
Abstract:
A cable connector is provided that has a connector housing that is thin and takes the form of a wafer. Terminals are held within the housing and termination portions extend lengthwise from the terminals. The termination portions extend out from the housing for terminating bare conductors of signal wires to them. A grounding shield is provided that extends over the signal terminals from their contact portions at the front end of the connector to their rear termination portions. The grounding shield thereby provided a ground extent over the termination area that increases the electrical affinity of the signal wires to the grounding shield so as to reduce crosstalk and noise during operation at high frequencies. In one embodiment, the grounding shield includes a separate extension that is connected to the base grounding shield. In another embodiment, the grounding shield has a length sufficient to extend over the termination area.
Abstract:
A cable bypass assembly is disclosed for use in providing a high speed transmission line for connecting a board mounted connector of an electronic device to a chip on the device board. The bypass cable assembly has a structure that permits it, where it is terminated to the board mounted connector and the chip member, or closely proximate thereto to replicate closely the geometry of the cable. The connector terminals are arranged in alignment with the cable signal conductors and shield extensions are provided so that shielding can be provided up to and over the termination between the cable signal conductors and the board connector terminal tails. Likewise, a similar termination structure is provided at the opposite end of the cable where a pair of terminals are supported by a second connector body and enclosed in a shield collar. The shield collar has an extension that engages the second end of the cable.
Abstract:
A plug style connector has an outer connector housing with an internal passage which accommodates a cable assembly. A plurality of multi-wire cables extend through a wire organizer that arranges the cables in a preselected arrangement. Exposed free ends of the conductors of the wires are terminated to multiple circuit boards which are separated in a preselected spacing by a spacer member. The spacer member and wire organizer have flat opposing surfaces that define boundaries of a body portion formed by the application of a hot melt to the cables, the hot melt adheres to the wire organizer and the spacer to hold the cable wires and their associated circuit boards in place for correct insertion into the connector housing.
Abstract:
An adapter module used to convert optical signals to electrical signals or electrical signals to optical signals utilizing a “C” shaped retaining clip to secure the adapter module housing together. The retaining clips are used in place of screws, rivets or snap fits and provide an easy and simple way to assembled adapter modules. The retaining clips require no additional structure thereby minimizing the overall size of the adapter module.
Abstract:
A shielded housing that provides a shield to a circuit board connector of the SFP-style includes a conductive body that encompasses the connector. The housing has an opening that defines an entrance of the housing through which an opposing mating connector may be inserted. The housing entrance includes one or more guide members that extend into the center of the housing and provide a guide for guiding an opposing mating connector into engagement with the circuit board connector.
Abstract:
A shielded housing that provides a shield to a circuit board connector of the SFP-style includes a conductive body that encompasses the connector. The housing has an opening that defines an entrance of the housing through which an opposing mating connector may be inserted. The housing also includes a pair of engagement tabs that are bent inwardly of the housing at an angle thereto and these tabs engage openings formed in a shell of a plug connector that mates with the SFP-style connector. The tabs rest in the openings and may be released by way of latching mechanism that is part of the plug connector. This mechanism includes a handle and two arms that extend lengthwise. The arms end in cam portions that contact and lift the engagement ends out of the plug connector shell openings to unlatch the plug connector from the SFP-style connector. A biasing member is also provided that returns the delatching actuating mechanism to its initial position once the connectors have been released.
Abstract:
An adapter module used to convert optical signals to electrical signals or electrical signals to optical signals utilizing a “C” shaped retaining clip to secure the adapter module housing together. The retaining clips are used in place of screws, rivets or snap fits and provide an easy and simple way to assembled adapter modules. The retaining clips require no additional structure thereby minimizing the overall size of the adapter module.
Abstract:
A cable assembly including a cable with at least one connector terminated to an end of the cable. The cable includes at least one pair of signal wires and a grounding member that extends the length of the cable. The signal wires and grounding member are terminated to a connector and specifically terminated to two signal terminals and one ground terminal of the connector. These wires are terminated to tail portions of the terminals which are enclosed in an insulative material that defines a body portion of the connector housing. The ground terminal has two contact portions that extend along the exterior of the connector housing body portion, while the signal terminals have contact portions that extend lengthwise of the connector housing. The signal terminal contact portions are enclosed within an extension of the connector housing and the extension and body portions are themselves enclosed in a metal grounding shell. The grounding shell engages the ground contacts at one end and has two contact arms integrally formed therewith that extend into the interior of the connector housing between the signal terminal contact portions.