摘要:
The present invention discloses a micromirror device with multi-axis rotational and translational motion. Newly introduced structure of the top electrode plate improves structural stability, flexibility, and more motion efficiency of the micromirror device. The invention also improves controllability of micromirror motion by designing the appropriate flexible structure to generate desired motion. With side-by-side arrangement of the micromirror devices, the micromirror devices are built as an array to form a micromirror array lens.
摘要:
An optical system includes a refractive lens system and a micromirror array lens with angled positioning to improve light efficiency. The micromirror array lens is optically coupled to the refractive lens system, and has a focal length gradient. The micromirror array lens is configured to focus the light input refracted by the micromirror array lens onto a focal plane, the micromiror array lens is positioned at an acute angle with respect to the light input and the focal plane. The optical system may further include an infrared filter and/or an optical stop to block unwanted light. The advantages of the present invention include improved light efficiency, image quality, and/or focusing.
摘要:
An optical system with optical image stabilization of the present invention compensates the movement of the optical system occurring during imaging process using a Micro-Electro Mechanical System (MEMS) unit having an MEMS mirror to stabilize an image of an object formed on an image plane. A micro-actuator with the in-plane translation makes the MEMS mirror have a required rotation to change optical paths of light from the object to the image plane for optical image stabilization. The optical system with optical image stabilization or the present invention provides fast speed, light weight, simple operation, and high image quality image stabilization for the optical system.
摘要:
Television broadcasting systems of this invention comprise an imaging system, and transmission system, and a displaying system. The imaging system captures two-dimensional images of an object at different focal plane, and generates an all-in-focused image and depth profile. A data signal carrying the image data is generated and transmitted over a broadcasting system compatible with commercial two-dimensional television broadcasting, cable, and/or alternative systems. The depth profile is transmitted by using vacant space in video/audio signal within the allocated channel bandwidth. The data signal is received by the displaying system and the extracts the all-in-focused image and depth information from the data signal. The object is restored from all-in-focused image and depth profile and displayed on the displaying system as a three-dimensional spatial image. Viewers having conventional two-dimensional display device can watch enhanced two-dimensional images.
摘要:
The present invention provides a Micromirror Array Lens (MMAL) with fixed focal length to reproduce a designed surface having optical focusing power. The micro mechanical structures with surface profile shape memory are fabricated and released after fabrication. Each micromirror in the MMAL has its own motion by stiction force and/or electrostatic force while and/or after the releasing process. Once the designed surface is formed, the MMAL has an optical power as a lens.
摘要:
A new three-dimensional imaging system has been needed to overcome the problems of the prior arts using conventional variable focal length lenses, which have slow response time, small focal length variation, and low focusing efficiency, and require a complex mechanism to control it. The three-dimensional imaging system of the present invention uses the variable focal length micromirror array lens. Since the micromirror array lens has many advantages such as very fast response time, large focal length variation, high optical focusing efficiency, large size aperture, low cost, simple mechanism, and so on, the three-dimensional imaging system can get a real-time three-dimensional image with large depth range and high depth resolution.
摘要:
A compact auto-focus image taking lens system with a Micromirror Array Lens and a lens-surfaced prism of the present invention comprises a lens-surfaced prism, an aperture stop, a first lens element, a second lens element, a Micromirror Array Lens, and an image surface, optionally an infrared cut-off filter. By introducing a Micromirror Array Lens and a lens-surfaced prism, the compact auto-focus image taking lens system with a Micromirror Array Lens and a lens-surfaced prism of the present invention has many advantages over the prior arts in the field of invention, such as compactness in thickness, small number of optical elements, high performance of optical quality, fast focusing speed, low power consumption, enough space for optional elements such as an infrared cut-off filter and diversity in optical geometries.
摘要:
The present invention provides a compact automatic focusing system using a Micro-Electro-Mechanical System (MEMS) unit. The automatic focusing system using the MEMS unit has a small volume and low power consumption, and its operation is very reliable, precise, and fast. The MEMS unit for automatic focusing comprises at least one micromirror, at least one micro-actuator, and at least one micro-converter fabricated on the same substrate by microfabrication technology. By fabricating the micromirror, the micro-actuator, the micro-converter on the same substrate, the volume of the automatic focusing system of the present invention can be greatly reduced. The micro-converter converts the in-plane translation of the micro-actuator to out-of-plane translation of the micromirror to provide a large out-of-plane translation range.
摘要:
The present invention provides a micromirror array with iris function that comprises a plurality of micromirrors and is configured to provide an adjustable aperture having a plurality of aperture sizes by controlling motions of the micromirrors. The adjustable aperture controls the amount of incident light admitted to an image sensor by changing the aperture size. Also, the micromirrors comprised in the aperture forms a Micromirror Array Lens having variable focusing function.
摘要:
A compact image taking lens system with a lens-surfaced prism of the present invention comprises a prism, an aperture stop, a first lens element, a second lens element, reflecting mirror surface, and image surface, optionally an infrared cut-off filter. By introducing a lens-surfaced prism, the compact image taking lens system with a lens-surfaced prism of the present invention has many advantages over the prior arts in the field of invention, such as compactness in thickness, small number of optical elements, high performance of optical quality, enough space for optional elements such as an infrared cut-off filter and diversity in optical geometries.