Abstract:
A surface light source structure having a circuit board, a first light emitting diode (LED) array, and a second LED array is provided. The first and second LED arrays are assembled on the circuit board. Each LED rows of the two LED arrays has a plurality of LED units connected in series. The LED rows of the first LED array are connected in parallel. The LED rows of the second LED array are connected in parallel. The LED rows of the second LED array are intersected between the LED rows of the first LED array. Positive-to-negative directions of the LED units of the first and second LED array are arranged in opposite directions.
Abstract:
A surface light source structure having a circuit board, a first light emitting diode (LED) array, and a second LED array is provided. The first and second LED arrays are assembled on the circuit board. Each LED rows of the two LED arrays has a plurality of LED units connected in series. The LED rows of the first LED array are connected in parallel. The LED rows of the second LED array are connected in parallel. The LED rows of the second LED array are intersected between the LED rows of the first LED array. Positive-to-negative directions of the LED units of the first and second LED array are arranged in opposite directions.
Abstract:
A light emitting diode (LED) package including a carrier, an adhering layer and an LED chip is provided. The adhering layer is disposed on the carrier. The LED chip is disposed on the adhering layer and electrically connected to the carrier. The material of the adhering layer comprises a lead-free tin-based eutectic alloy. Furthermore, a manufacturing method for the LED package is provided.
Abstract:
A light source module including a light guide plate, at least one light emitting device, a light-controlling pattern element, and an absorbing pattern element is provided. The light guide plate has a light emitting surface, a first surface opposite the light emitting surface, and at least one opening. The opening passes through the first surface and extends from the first surface toward the light emitting surface. The at least one light emitting device is disposed in the opening and arranged along an arranging direction. The light-controlling pattern element is disposed on the light emitting surface and covers the opening and the light emitting device. The opening faces towards the absorbing pattern element. The absorbing pattern element is disposed besides one of the at least one light emitting device and extends toward a side wall of the opening. Moreover, another two light source modules are also provided.
Abstract:
A backlight module includes at least one light emitting device capable of emitting a light beam, a light guide plate, and a thermal insulation light guide element. The light guide plate has two surfaces opposite to each other and a side surface connecting the two surfaces. The light emitting device is disposed beside the side surface. The light beam enters the light guide plate through the side surface. The thermal insulation light guide element has a light incident surface and a light emitting surface. The light incident surface having at least one first recess is located in a transmission path of the light beam and between the light emitting device and the side surface. The light emitting surface is disposed between the light incident surface and the side surface. The glass transition temperature of the thermal insulation light guide element is higher than that of the light guide plate.