Abstract:
Disclosed is a machine readable code of a set of distinguishable symbols including at least a first symbol for encoding zeroes and a second symbol for encoding ones, wherein the first symbol exhibits a first color during machine reading and the second symbol exhibits a second color during machine reading, wherein the first color and the second color are detectably different under machine reading conditions.
Abstract:
Radiation curable phase change ink comprising an ink vehicle that includes at least one curable carrier, at least one gellant, at least one curable wax and at least one photoinitiator. In a method of forming an image with the ink, the radiation curable phase change ink is melted, then jetted onto an image receiving substrate, wherein the radiation curable phase change ink forms a gel state, and exposed to ultraviolet light to cure the curable components of the radiation curable phase change ink. The wax cures into the structure of the ink, thereby generating a robust image of excellent gloss.
Abstract:
A curable solid ink composition including a curable component, a non-curable component including an ethoxylated octylphenol derivative, a photoinitiator, and a colorant. The curable solid ink composition has a viscosity in the range of less than 10 cPs at 90° C., a shrinkage value of less than 3%, and a superior curing rate compared to existing curable solid ink compositions. The ethoxylated octylphenol derivatives may be prepared by reacting an ethoxylated octylphenol, a linear alcohol, and diisocyanates or polyisocyanates.
Abstract:
A phase change composition including at least one crystalline polyester and at least one acrylate monomer. Examples of suitable crystalline polyesters include aliphatic crystalline polyesters and polylactones. A method of making the phase change composition, and a method for applying the phase change composition to a substrate.
Abstract:
A system and a method to protect an image on a substrate. The method includes applying a coating to the surface of a substrate having an unspread ink image thereon, wherein the image is formed by droplets of solid ink, and wherein the coating interacts with the ink. Moreover, the method includes spreading the coated ink on the surface of the substrate, wherein the ink and the coating interact during the spreading process and wherein the spread ink on the surface of the substrate forms the continuous image.
Abstract:
Radiation curable phase change ink comprising an ink vehicle that includes at least one curable carrier, at least one gellant, at least one curable wax and at least one photoinitiator. In a method of forming an image with the ink, the radiation curable phase change ink is melted, then jetted onto an image receiving substrate, wherein the radiation curable phase change ink forms a gel state, and exposed to ultraviolet light to cure the curable components of the radiation curable phase change ink. The wax cures into the structure of the ink, thereby generating a robust image of excellent gloss.
Abstract:
Methods of controlling gloss of an image are disclosed. The methods may include forming an image over a substrate by applying an ink composition and optionally an overcoat composition at least partially over the substrate. The ink composition or overcoat composition may include at least one gellant, at least one curable monomer, optionally at least one curable wax and optionally at least one photoinitiator. The ink composition or overcoat composition may be curable upon exposure to radiation. The methods may further include providing a micro-roughness to one or more portions of the ink composition or overcoat composition by non-uniformly curing the ink composition or overcoat composition, and flood curing the ink composition or overcoat composition to complete a cure. The methods may thereby provide a controlled gloss level to the image.
Abstract:
This disclosure is generally directed to curable solid inks, such as radiation-curable solid inks, and their use in forming images, such as through transfuse printing. More specifically, this disclosure is directed to radiation-curable solid inks, such as ultraviolet-light-curable phase-change inks, that comprise curable and non-curable waxes.
Abstract:
Disclosed is a radiation curable ink containing a fluorescent material that upon exposure to activating energy fluoresces such that an image that was not visible prior to exposure to the activating energy becomes visible. Also disclosed are an ink jet system and a process printing the disclosed radiation curable ink.
Abstract:
Methods and devices for forming, such as by printing, high quality, high throughput, ultraviolet curable gel ink images on flexible substrates for packaging applications are disclosed. The methods and devices have excellent image quality and do not require pinning of the ink during color printing or nitrogen inerting during curing.