摘要:
An optical element scanning device (10) includes a base plate (200) and one or more linear actuators (210, 220) operably connected to the base plate. An armature (110) may be pivotably connected to the one or more linear actuators, and an optical element (100) may be operably connected to the armature.
摘要:
A single camera autostereoscopic recording system includes a single image recorder having a single optical path moved along the scanning path substantially continuously for a plurality of scanning cycles. A path defining structure includes the ability to adjust the convergent point as well as the extent of travel along the scanning path or disparity of the images. The convergent point of the scanning path can be manually or automatically adjusted using a range finder. A unique driver structure provides scanning motion with reduced reactional forces. The degree of motion of the recorded images is used to adjust the amount of travel along the scanning path. Synchronization between the driver and the recorder is bi-directional for double exposures. The recorded image is adjusted in recording or in display as a function of the position in the scanning path.
摘要:
An image compositing and compression method based on the creation and processing of parallax differences in motion photography. A parallax scanning MOE lens creates discrete parallax differences in the objects in the recorded scene that are perceived by the viewer as enhanced texture and depth when displayed. Using parallax differences in a captured scene, a computer can detect objects for the purpose of creating image compositing mattes. This method allows matte passes to be filmed on location at the time of principal photography, thereby saving costly additional blue/green stage production shoot days associated with traveling matte techniques. In addition, because the mattes are based on parallax scan differences in the recorded scene and not on a uniform color and luminance process, certain conflicting scene subject colors will not have to be avoided. Also, because the matte scenes are recorded on location, the lighting in each of the various elements matches in the final composited image.
摘要:
An image compositing and compression method based on the creation and processing of parallax differences in motion photography. A parallax scanning MOE lens creates discrete parallax differences in the objects in the recorded scene that are perceived by the viewer as enhanced texture and depth when displayed. Using parallax differences in a captured scene, a computer can detect objects for the purpose of creating image compositing mattes. This method allows matte passes to be filmed on location at the time of principal photography, thereby saving costly additional blue/green stage production shoot days associated with traveling matte techniques. In addition, because the mattes are based on parallax scan differences in the recorded scene and not on a uniform color and luminance process, certain conflicting scene subject colors will not have to be avoided. Also, because the matte scenes are recorded on location, the lighting in each of the various elements matches in the final composited image.
摘要:
A lens aperture of an autostereoscopic camera is moved in a parallax scanning pattern through a plurality of disparity positions offset from the optical axis of the camera lens. Images of a scene being photographed, as viewed through the lens aperture in its various disparity positions, are recorded for subsequent display, which produces a three dimensional illusion when viewed on a conventional display with the unaided eye. The size of the lens aperture and the parallax scanning pattern are adjustable to suit conditions. The lens aperture may be defined by a through-hole in an opaque card, a plurality of interleaved leaf elements, or a planar array of cells switched between transparent and opaque states. In addition to stereoscopic imaging, the moving lens aperture principle of the present invention may be utilized in range-finding and camera image stabilization applications.
摘要:
A lens aperture of an autostereoscopic camera is moved in a parallax scanning pattern through a plurality of disparity positions offset from the optical axis of the camera lens. Images of a scene being photographed, as viewed through the lens aperture in its various disparity positions, are recorded for subsequent display, which produces a three dimensional illusion when viewed on a conventional display with the unaided eye. The size of the lens aperture and the parallax scanning pattern are adjustable to suit conditions. The lens aperture may be defined by a through-hole in an opaque card, a plurality of interleaved leaf elements, or a planar array of cells switched between transparent and opaque states. In addition to stereoscopic imaging, the moving lens aperture principle of the present invention may be utilized in range-finding and camera image stabilization applications.
摘要:
The method and apparatus substantially continuously changes the view of a single image receive substantially aligned to a convergent point in a scene, along a scanning path and recording a plurality of scanning images for each cycle of traversing the scanning path. The scanning path and the scanning and recording rates are selected to produce motion within visio-psychological memory rate range when displayed using standard display devices.
摘要:
A method is provided for obtaining images for use in displaying a three-dimensional illusion which includes the step of obtaining first and second images of a subject volume having foreground and background portions with the points of origin of those images located in a first plane which includes left and right points of origin of an observer of the subject volume and which is normal to the optical axis of that observer. The first and second points of origin are also respectively located equidistant above and below a first line interconnecting the left and right points of origin and are located along a second line which is normal to and bisects the first line. The first and second optical axes are aligned to converge in a second plane parallel to the first plane which includes the foreground portion of the subject volume within the field of view of the observer which is closest to the first plane. A support apparatus is provided for using one or two imaging devices in implementing the method of the subject invention and an alternative support apparatus is disclosed which incorporates a teeter-totter arrangement to automatically provide for maintenance of convergence of the optical axes in the second plane upon adjustment of the effective first and second points of origin above and below the first line connecting the left and right points of origin of the observer. Image recording medium containing images produced by the above method is also disclosed.