Abstract:
The invention relates to noise or sound control achieved by enclosing the noise source in an active enclosure. Arrays of vibration inputs (for example, shakers, piezoceramics, etc.) are attached to the walls of the active enclosure, or loudspeakers located inside the enclosure can be used to excite the sides of the enclosure. An array of error microphones are located in the radiated acoustic field or PVDF strips are positioned on the wall. A controller senses the levels of sound observed at the error microphones or PVDF film and adjusts the oscillating inputs (in terms of frequency content, phase and magnitude) to the active vibration inputs in order to minimize the radiated sound.
Abstract:
Vibration or acoustic sound control is achieved using an elastic layer of thermal or insulation material in which a plurality of discrete masses are distributed throughout. The elastic layer may be installed as a pre-formed layer, or be blown into position within a structure where vibration or acoustic sound control is required.
Abstract:
Vibration or acoustic sound control is achieved using an elastic layer of thermal or insulation material in which a plurality of discrete masses are distributed throughout. The elastic layer may be installed as a pre-formed layer, or be blown into position within a structure where vibration or acoustic sound control is required.
Abstract:
A hot melt adhesive hose assembly comprises a heater circuit wrapped around an external surface portion of the hose assembly, a temperature sensor, and an elongated thermal fuse which is likewise wrapped around an external surface portion of the hose assembly such that successive spiral turns of the thermal fuse are effectively interposed between successive spiral turns of the heater circuit. The thermal fuse may be electrically connected in series with the heater circuit so as to effectively terminate electrical power to the heater circuit as a result of the melting of the thermal fuse, or alternatively, the thermal fuse may be electrically connected in series with the temperature sensor, so as to detect abnormal temperature levels at substantially any location throughout the length of the hose assembly.
Abstract:
Reduction or cancellation of acoustic noise is achieved by providing an amplified, oppositely phased version of the noise by means of an acousto-fluidic amplifier. The amplified acoustic output noise is delivered through an impedance matching horn in destructively interfering relation with the original noise. Depending on the acoustic noise source and its spatial distribution, the acousto-fluidic amplifier may be a single stage amplifier or multiple stages connected in parallel and/or cascade, with output horns spatially distributed to have the maximum cancellation effect. Sensed noise, prior to fluidic amplification, may be processed in a manner to effect feedback or feedforward control of the amplified acoustic output signals.