Abstract:
A passive distributed vibration absorber that utilizes multiple discrete mass elements and a viscoelastic layer and that effectively attenuates vibration in modally dense structures excited by a broadband input noise excitation. and is tunable to multiple natural frequencies in such modally dense vibrating structures including low frequencies.
Abstract:
Vibration or acoustic sound control is achieved using an elastic layer of thermal or insulation material in which a plurality of discrete masses are distributed throughout. The elastic layer may be installed as a pre-formed layer, or be blown into position within a structure where vibration or acoustic sound control is required.
Abstract:
The active/passive absorber for extended vibration and sound radiation control includes principally two layers. The first layer has a low stiffness per unit area which allows motion in the direction perpendicular to its main plane. The second layer is principally a mass layer. These two combined layers have a frequency of resonance close to one of the main structure. The dynamic behavior of the coupled system makes the active/passive absorber a passive absorber; however, the first layer can be electrically actuated to induce motion in the direction perpendicular to its main plane. This addition property induces and/or changes the motion of the mass layer and therefore improves the dynamic properties of the active/passive absorber system. The active/passive absorber can have multiple mass layers and multiple elastic layers stacked one on top of the other. In addition, the mass layers can be continuous or discretized, and have varying thicknesses and shapes for sections and/or segments in the mass layer.
Abstract:
A hot melt adhesive hose assembly comprises a heater circuit wrapped around an external surface portion of the hose assembly, a temperature sensor, and an elongated thermal fuse which is likewise wrapped around an external surface portion of the hose assembly such that successive spiral turns of the thermal fuse are effectively interposed between successive spiral turns of the heater circuit. The thermal fuse may be electrically connected in series with the heater circuit so as to effectively terminate electrical power to the heater circuit as a result of the melting of the thermal fuse, or alternatively, the thermal fuse may be electrically connected in series with the temperature sensor, so as to detect abnormal temperature levels at substantially any location throughout the length of the hose assembly.
Abstract:
The active/passive absorber for extended vibration and sound radiation control includes principally two layers. The first layer has a low stiffness per unit area which allows motion in the direction perpendicular to its main plane. The second layer is principally a mass layer. These two combined layers have a frequency of resonance close to one of the main structure. The dynamic behavior of the coupled system makes the active/passive absorber a passive absorber; however, the first layer can be electrically actuated to induce motion in the direction perpendicular to its main plane. This addition property induces and/or changes the motion of the mass layer and therefore improves the dynamic properties of the active/passive absorber system. The acive/passive absorber can have multiple mass layers and multiple elastic layers stacked one on top of the other. In addition, the mass layers can be continuous or discretized, and have varying thicknesses and shapes for sections and/or segments in the mass layer.
Abstract:
An active foam system for noise and vibration control which employs embedded PVDF layers (12) in a urethane foam pad (13). The system can be used to isolate and/or attenuate vibration. It can also be used to cause a reduction in far-field acoustic pressure and to act as a structurally radiated speaker (130).
Abstract:
Apparatus is disclosed for attenuating sound radiated from a vibrating surface into a control volume as comprised of a source of a control signal indicative of the amplitude and frequency content of the sound transmitted from the vibrating surface. An actuator(s) or shaker is directly connected to the vibrating surface for further vibrating the vibrating surface to induce a cancelling sound into the control volume for combining with and attenuating the transmitted sound. A sensor(s) is also disposed within the control volume for detecting the resultant sound indicative of the combination of the cancelling and the transmitted sound to provide an error signal indicative thereof. A controller in the illustrative form of a computer executing a minimization algorithm, is responsive to the error signal for adaptively modifying the control signal as to phase and amplitude, which modified signal is applied to drive the actuator(s), whereby the error signal is driven to a minimum level and the sound within the control volume is similarly attenuated. One illustrative embodiment of this invention is particularly adapted to attenuate sound within the fuselage of an aircraft, wherein the principle source of noise is derived from the aircraft's engine and propeller and is introduced through the aircraft's fuselage into the aircraft's cabin. The actuator is coupled directly to the fuselage and is energized with the control signal adaptively modified as to phase and amplitude such that the cancelling sound emanating from the actuator(s) combines with and attenuates the engine and propeller noise within the aircraft cabin.
Abstract:
Vibration or acoustic sound control is achieved using an elastic layer of thermal or insulation material in which a plurality of discrete masses are distributed throughout. The elastic layer may be installed as a pre-formed layer, or be blown into position within a structure where vibration or acoustic sound control is required.
Abstract:
A passive distributed vibration absorber that utilizes multiple discrete mass elements and a viscoelastic layer and that effectively attenuates vibration in modally dense structures excited by a broadband input noise excitation and is tunable to multiple natural frequencies in such modally dense vibrating structures including low frequencies
Abstract:
The active/passive absorber for extended vibration and sound radiation control includes principally two layers. The first layer has a low stiffness per unit area which allows motion in the direction perpendicular to its main plane. The second layer is principally a mass layer. These two combined layers have a frequency of resonance close to one of the main structure. The dynamic behavior of the coupled system makes the active/passive absorber a passive absorbe; however, the first layer can be electrically actuated to induce motion in the direction perpendicular to its main plane. This addition property induces and/or changes the motion of the mass layer and therefore improves the dynamic properties of the active/passive absorber system.