Abstract:
A transmitting-type liquid crystal display projection system including a planar light source which emits planar white beam or planar R/G/B beams in succession is provided. A first polarization filter receives the planar light source and polarizes the same to be in a first polarization state. A liquid-crystal light valve receives the polarized planar light source, and converts the first polarization state to a second polarization state having a corresponding gray level. A second polarization filter receives a light output from the liquid crystal light valve to produce a second polarization light beam. A projection unit projects the second polarization light beam onto a display plane. Using the same planar light source, a polarization beam splitting (PBS) device with a refection-type liquid crystal light valve can be used to achieve the reflection-type projection system.
Abstract:
An illumination device including a base, a light bar, and a cover is provided. The base has a cavity. The light bar is disposed at the bottom of the cavity and includes a plurality of dot light sources arranged along a first axial direction. The cover is assembled to the base for correspondingly covering the light bar and has a plurality of openings. The distribution density of the openings increases from a corresponding location of a dot light source towards two opposite ends along the first axial direction. A light source and a light module are also provided. Another illumination device including a base and a plurality of light sources is further provided.
Abstract:
An image screen includes a transparent substrate, a metal film, and an optical reflective stack layer. The metal film is disposed on a first surface of the transparent substrate, having a thickness and a set of material characteristic constants being predetermined. The optical reflective stack layer is disposed over the metal layer. The metal film and the optical reflective stack layer function together to selectively reflect a light with a portion of wavelength. In addition, according to the need, a diffusion micro-structure layer can be disposed on a second surface of the transparent substrate. Further for example, another reflective layer or optical absorbing layer can be further disposed on another surface of the optical reflective stack layer. The reflective layer can be, for example, a metal film.
Abstract:
A display system 1 is composed of a ghost image reducing device 100 and an image device 10. The ghost image reducing device 100 comprises an image reflecting element 110 and a polarizing element 120. The image reflecting element 110 includes a substrate 112 and a phase modulating element 114 which is adjacent to the substrate 112 and has a reflecting surface 114a. The image device 10 generates a polarized image light P1 which is received by the reflecting surface 114a. Then, a portion of the polarized image light P1 is reflected by the reflecting surface 114a for producing a first reflecting polarized image light P2, another portion of the polarized light P1 is projected into the phase modulating element 114 and reflected by the substrate 112 for producing a second reflecting polarized image light S2 whose polarizing direction is different from that of the first reflecting polarized image light P2.
Abstract:
A head mount personal computer (HMPC) and an interactive system using the same are provided. The provided HMPC includes a microprocessing unit, an output unit and an image capture unit with a distance detection function (ICWDD). The microprocessing unit is served as an operation core of the HMPC. The output unit is coupled to and controlled by the microprocessing unit, and configured to project an optical image onto a space. The ICWDD is coupled to and controlled by the microprocessing unit, and configured to capture operation gestures on the projected optical image from a user wearing the HMPC, such that the microprocessing unit correspondingly controls operations of the HMPC in response to the operation gestures on the projected optical image from the user.
Abstract:
A bulb cap is mounted on a base and includes an elastic translucent cap and a gas injecting device. The elastic translucent cap has an initial geometric shape and a thickness-distribution structure. The gas injecting device is coupled to the elastic translucent cap. After the elastic translucent cap is mounted at the base, gas with a gas-pressure can be injected by using the gas injecting device so that the elastic translucent cap is expanded to a geometric shape structure corresponding to the gas-pressure to change a light pattern of the base, and meanwhile the geometric shape structure is varied with the gas-pressure. In addition, the elastic translucent cap can be replaced by a bulb cap with a fixed geometric shape.
Abstract:
A head mount personal computer (HMPC) and an interactive system using the same are provided. The provided HMPC includes a microprocessing unit, an output unit and an image capture unit with a distance detection function (ICWDD). The microprocessing unit is served as an operation core of the HMPC. The output unit is coupled to and controlled by the microprocessing unit, and configured to project an optical image onto a space. The ICWDD is coupled to and controlled by the microprocessing unit, and configured to capture operation gestures on the projected optical image from a user wearing the HMPC, such that the microprocessing unit correspondingly controls operations of the HMPC in response to the operation gestures on the projected optical image from the user.
Abstract:
An optical scanning-type touch apparatus and an operation method thereof are provided. The optical scanning-type touch apparatus includes a touch area, a light scanning module, an imaging module and a calculating unit. The light scanning module is disposed at one corner of the touch area to emit a scanning light for scanning the touch area. The imaging module is disposed at another corner of the touch area adjacent the light scanning module to obtain a first angle between the scattering light and a edge of the touch area, wherein the edge of the touch area is between the light scanning module and the imaging module. The calculating unit receives the first angle, a second angle and a distance between the light scanning module and the imaging module to calculate a position of the object on the touch area.
Abstract:
A polarized light illumination device is described, which includes a light source, a polarizer, a reflector, and a polarized light converter. The light source generates light. The reflector is used for reflecting light generated by the light source towards the polarizer. The polarizer allows a first polarized light to pass through, and reflects a second polarized light. The polarized light converter reflects the light irradiated on the polarized light converter and performs a polarization conversion. A plane where the polarized light converter is located is substantially perpendicular to the polarizer.
Abstract:
An LCD projector of two-plate type is disclosed. The LCD projector comprises a light source, a color valve, a dichroic mirror, a polarization rotating device, a polarization beam splitter, a first reflective LCD panel, a second LCD panel and a projection lens. The first reflective LCD panel is used to modulate the green light with the green component of the image signal. The red light and the blue light are modulated in a time field sequential manner by the color valve and the second reflective LCD panel.