Abstract:
In a method for detecting air in the brake circuit of a motor vehicle having a hydraulic brake system that has a vacuum brake booster, the pressure prevailing in the vacuum chamber of the vacuum brake booster in the operated and the non-operated states of the brake is measured, and a parameter characteristic of the brake performance is determined as a function of the measured pressure, and the characteristic parameter is compared to a reference value.
Abstract:
A brake booster includes an input element actuatable by a driver, an actuator for generating a support force, an output element that receives at least one of an input or support force and that applies an actuating force to a piston of a brake master cylinder, a force transmission unit having elastic properties and transmitting the input and/or support forces to the output element, and a preload unit acting on the force transmission unit to apply a force couple to the force transmission unit when the brake booster is in idle mode. A method for operating the brake booster includes generating a support force prior to a braking intent to be anticipated or immediately after detection of a braking intent, in a time span before or immediately after detection of an actuation of the input element.
Abstract:
A method for detecting a braking intention in a vehicle includes: establishing at least one setpoint braking power for the braking intention specified by a driver and/or an automatic vehicle control system; and taking at least one ascertained sensor variable into consideration. The sensor variable includes: a variable regarding a position and/or an adjustment travel of an output rod of the braking system, a position and/or an adjustment travel of a booster body of the braking system, a position and/or an adjustment travel of a timing case of the braking system, a position, an adjustment travel and/or a rotation angle of a component of a motor of an electromechanical brake booster, a position, an adjustment travel and/or a rotation angle of a component of a thread of the brake booster, and/or a shape and/or a deformation of a reaction disk of the braking system.
Abstract:
A method for actuating a hydraulic vehicle brake system, includes a master brake cylinder with a preferably electromechanical brake booster and a wheel slip control device. The master brake cylinder is actuated simultaneously with the brake booster, and hydraulic pumps of the wheel slip control device are driven by an electric motor. Pressure builds more quickly in the wheel brakes of the vehicle brake system for safety and assistance functions that require high pressure build-up dynamic. The method also increases the wheel brake pressure using the pressure that can be generated by actuating the master brake cylinder with the brake booster.
Abstract:
A brake booster includes an input element actuatable by a driver, an actuator for generating a support force, an output element to which an input or support force may be applied and via which an actuating force may be applied to a piston of a brake master cylinder, and a force transmission unit having elastic properties, situated between the input element and the actuator, and the output element, and transmitting the input and/or support forces to the output element. An air gap, which in idle mode is smaller or larger than a desired air gap, is provided between the input element and the force transmission unit. A method for operating the brake booster includes generating a support force prior to a braking intent to be anticipated or immediately after detection of a braking intent, in a time span before or immediately after detection of an actuation of the input element.
Abstract:
The invention relates to a method for operating a brake-boosted brake system of a vehicle, comprising the following steps: determining braking force information (28) with respect to a driver braking force (Ff), which is applied to the actuating element (10) when an actuating element (10) of the brake system is actuated by a driver of the vehicle; determining an actual speed parameter (34) with respect to an adjustment speed of a servo piston (16) of the brake system to which a servo power (Fu) of a brake booster (14) of the brake system is applied; determining a relative speed parameter (40) with respect to a relative speed of the servo piston (16) relative to the input piston (12); establishing a target speed parameter (50) with respect to the adjustment speed of the servo piston (16) taking into account the determined braking force information (28), the determined actual speed parameter (34) and the determined relative speed parameter (40), and actuating the brake booster (14) taking the established target speed parameter (50) into account. The invention further relates to a control device (24) and to a brake booster (14) for a brake-boosted brake system of a vehicle, and to a brake-boosted brake system for a vehicle.
Abstract:
A method for detecting a braking intention in a vehicle includes: establishing at least one setpoint braking power for the braking intention specified by a driver and/or an automatic vehicle control system; and taking at least one ascertained sensor variable into consideration. The sensor variable includes: a variable regarding a position and/or an adjustment travel of an output rod of the braking system, a position and/or an adjustment travel of a booster body of the braking system, a position and/or an adjustment travel of a timing case of the braking system, a position, an adjustment travel and/or a rotation angle of a component of a motor of an electromechanical brake booster, a position, an adjustment travel and/or a rotation angle of a component of a thread of the brake booster, and/or a shape and/or a deformation of a reaction disk of the braking system.
Abstract:
A brake booster includes an input element actuatable by a driver, an actuator for generating a support force, an output element to which an input or support force may be applied and via which an actuating force may be applied to a piston of a brake master cylinder, and a force transmission unit having elastic properties, situated between the input element and the actuator, and the output element, and transmitting the input and/or support forces to the output element. An air gap, which in idle mode is smaller or larger than a desired air gap, is provided between the input element and the force transmission unit. A method for operating the brake booster includes generating a support force prior to a braking intent to be anticipated or immediately after detection of a braking intent, in a time span before or immediately after detection of an actuation of the input element.
Abstract:
A control device (10) for a brake-power-assisted brake system of a vehicle having a first input device (26) for a supplied first information item (28) relating to a supplied assistance force (Fu) of a brake booster (14) of the brake-power-assisted brake system, a second input device (30) for a supplied second information item (32) relating to a total force (Fg) comprising the assistance force (Fu) and a driver braking force (FI) supplied by activation of an activation element (12) of the brake-power-assisted brake system, an evaluation device (36) which is configured to define a third information item relating to a proportional relationship between the total force (Fg) and the assistance force (Fu) taking into account the first information item (28) and the second information item (32), and an output device (44, 50) which is configured to supply at least one control signal (46, 52) to at least one component (14, 54) of the brake-power-assisted brake system taking into account the defined third information item relating to the proportional relationship between the total force (Fg) and the assistance force (Fu).
Abstract:
The invention relates to a method for operating a brake-boosted brake system of a vehicle, comprising the following steps: determining braking force information (28) with respect to a driver braking force (Ff), which is applied to the actuating element (10) when an actuating element (10) of the brake system is actuated by a driver of the vehicle; determining an actual speed parameter (34) with respect to an adjustment speed of a servo piston (16) of the brake system to which a servo power (Fu) of a brake booster (14) of the brake system is applied; determining a relative speed parameter (40) with respect to a relative speed of the servo piston (16) relative to the input piston (12); establishing a target speed parameter (50) with respect to the adjustment speed of the servo piston (16) taking into account the determined braking force information (28), the determined actual speed parameter (34) and the determined relative speed parameter (40), and actuating the brake booster (14) taking the established target speed parameter (50) into account. The invention further relates to a control device (24) and to a brake booster (14) for a brake-boosted brake system of a vehicle, and to a brake-boosted brake system for a vehicle.