Abstract:
Apparatus and methods of implementing code space search of received signals are described herein. A code space search is implemented as a searcher that perform a subtask that is dynamically reconfigurable at each boundary of an initial integration time. Each particular subtask sets forth a programmable configuration of coherent integration hypothesis that are performed during the initial integration time. The searcher stores the results of the coherent integration hypothesis in a first portion of memory. A search accelerator operates on the initial integration results. The search accelerator can perform coherent integration of various frequency bins of different timing hypothesis, can generate energy values of the coherent integration results, and can generate a non-coherent energy summation. The energy values of the coherent integrations and non-coherent energy summations are stored in a second portion of memory. The ability to reconfigure the subtasks and accelerator operation provides flexibility in search space dimensions.
Abstract:
The subject matter disclosed herein relates to a system and method for processing a signal received from a satellite positioning system (SPS) in the presence of a multi-tone jammer. In one particular implementation, processing of a signal may be altered in response to detection of one or more conditions.
Abstract:
A circuit to detect position signals in a mobile station includes a general-purpose processor to generate instructions for execution of at least one signal detection algorithm and to carry out at least one other function not associated with the signal detection algorithm, special-purpose hardware blocks responsive to the instructions of the general-purpose processor to execute the at least one signal detection algorithm, and at least one of the general-purpose processor and the special-purpose hardware blocks configured to execute at least one efficiency process to optimize performance of the at least one signal detection algorithm. Methods and machine-readable medium implementing the method steps are also disclosed.
Abstract:
A network security system designed to provide per-packet encryption based on an encryption key identifier and an associated encryption key. Packets or groups of packets are encrypted based on information that relates to the packet such as service type, network number, and the like. This encryption criterion is associated with an encryption key and encryption key identifier. When a packet contains the certain criteria, the packet is encrypted using the encryption key. The packet is sent across the network using the encryption key identifier and the encrypted payload. The targeted nodes decrypt the packet using the reverse process.
Abstract:
A data networking system designed to provide efficient yet reliable transportation of data across a time division multiplexed network. This invention allows for redundantly sending and resending of segments in a dynamic manner. In addition, segments are fragmented, resized and sent with low overhead due to dynamic header sizes, segment sizes, forward error correction, and cyclic redundancy checks. The result is a very adaptive network that meets the demanding requirements of networks such as power line and wireless while still being able to transport data for voice, audio, video, computer, control, and the like.
Abstract:
A method for reducing call dropping rates in a multi-beam communication system. The multi-beam communication system includes a user terminal, a gateway, and a plurality of beam sources, where each beam source projects a plurality of beams, and where a communication link between the user terminal and the gateway is established on one or more beams. The method according to the present invention relies on a messaging protocol between the gateway and the user terminal. Based on messages sent from the user terminal to the gateway, preferably on a preselected periodic basis, the gateway can determine the more desirable beam(s) for transmitting data or information to the user terminal. The messages sent from the user terminal to the gateway contain values representing beam strengths as measured at the user terminal. The gateway uses the user terminal measured beam strengths to select the beams that should be used for transmitting data or information to the user terminal. The beams that should be used are the beams that if used will decrease the call dropping rates and provide a desired level of beam source diversity.
Abstract:
In a radio frequency (RF) receiver, a receiver RF chain is tuned to a first (e.g., global positioning system (GPS)) channel to permit receipt of a first (e.g., GPS) signal over the first (e.g., GPS) channel on the receiver RF chain during a first time duration. The receiver RF chain is tuned to a second (e.g., cellular page) channel to permit receipt of a second (e.g., cellular page) signal over the second (e.g., cellular page) channel on the receiver RF chain during a second time duration, following the first time duration. The first (e.g., GPS) signal is processed during the first time duration and the second time duration, without any apparent interruption of the first (e.g., GPS) signal during the second time duration. The processing, for example, provides a bridge signal (e.g., an estimated GPS signal on the receiver RF chain) during the second time duration.
Abstract:
A circuit to detect position signals in a mobile station includes a general-purpose processor to generate instructions for execution of at least one signal detection algorithm and to carry out at least one other function not associated with the signal detection algorithm, special-purpose hardware blocks responsive to the instructions of the general-purpose processor to execute the at least one signal detection algorithm, and at least one of the general-purpose processor and the special-purpose hardware blocks configured to execute at least one efficiency process to optimize performance of the at least one signal detection algorithm. Methods and machine-readable medium implementing the method steps are also disclosed.
Abstract:
Current is provided from a first node coupled to an output of a power supply to a second node coupled to a voltage supply input of an electronic device under test via a transistor having a first current-carrying electrode coupled to the first node and a second current-carrying electrode coupled to the second node. A first voltage is determined based on a voltage difference between the first node and the second node and a second voltage is determined based on a comparison of the first voltage to a voltage of the second node. The transistor is selectively disabled based on the second voltage.
Abstract:
A bandwidth allocation method and system designed to provide efficient bandwidth utilization based on data priority and needs of network nodes. This invention provides a specific design for dynamically creating, deleting, resizing, and reclaiming network channels based on priority and the needs of existing connections within a network or within multiple networks. Additionally, this invention provides a process to make channels and their encryption keys persistent through the creation of virtual channels which are made active when data needs to be transferred.